
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

1.3 DIJKSTRA'S 2-STACK DEMO

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the value stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

(1 + ((2 + 3) * (4 * 5)))

operand (value) operator

infix expression
(fully parenthesized)

value stack operator stack

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

value stack operator stack

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

(1 + ((2 + 3) * (4 * 5)))

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

+ ((2 + 3) * (4 * 5)))1

value stack operator stack

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

+ ((2 + 3) * (4 * 5)))

1

value stack operator stack

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

((2 + 3) * (4 * 5)))

1

value stack operator stack

+

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

((2 + 3) * (4 * 5)))

1

value stack operator stack

+

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

((2 + 3) * (4 * 5)))

1

value stack operator stack

+

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

2 + 3) * (4 * 5)))

1

value stack operator stack

+

(

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

+ 3) * (4 * 5)))

1

value stack operator stack

+

2

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

+ 3) * (4 * 5)))

1

value stack operator stack

+

2

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

2

3) * (4 * 5)))

1

value stack operator stack

+

+

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

2

3) * (4 * 5)))

1

value stack operator stack

+

+

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

2 +

) * (4 * 5)))

1

value stack operator stack

+

3

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

2 +

) * (4 * 5)))

1

value stack operator stack

+

3

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

2 +

3

* (4 * 5)))

1

value stack operator stack

+

)

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

2+3

* (4 * 5)))

1

value stack operator stack

+

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

* (4 * 5)))

1

value stack operator stack

+

2+3 = 5

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

* (4 * 5)))

1

value stack operator stack

+

5

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

(4 * 5)))

1

value stack operator stack

+

5

*

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

(4 * 5)))

1

value stack operator stack

+

5 *

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

(4 * 5)))

1

value stack operator stack

+

5

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

* 5)))

1

value stack operator stack

+

5

4

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

* 5)))

1

value stack operator stack

+

5

4

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

4

* 5)))

1

value stack operator stack

+

5

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

4 *

5)))

1

value stack operator stack

+

5

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

4 *

)))

1

value stack operator stack

+

5

5

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

4 *

)))

1

value stack operator stack

+

5

5

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

4 *

5

))

1

value stack operator stack

+

5

)

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

4*5

))

1

value stack operator stack

+

5

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

4*5

))

1

value stack operator stack

+

5

= 20

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

))

1

value stack operator stack

+

5

20

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

)

1

value stack operator stack

+

5

20

)

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

)

1

value stack operator stack

+

520

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

*

)

1

value stack operator stack

+

520 = 100

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

)

1

value stack operator stack

+

100

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

)

1

value stack operator stack

+

100

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

1

value stack operator stack

+100

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

1

value stack operator stack

+100 = 101

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

value stack operator stack

101

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

value stack operator stack

101

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of

applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

Dijkstra's two-stack algorithm

result

101

