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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the value stack.

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

operand (value) operator

infix expression
(fully parenthesized)

value stack operator stack



Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

value stack operator stack

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )



Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

+ ( ( 2 + 3 ) * ( 4 * 5 ) ) )1
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

+ ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

( ( 2 + 3 ) * ( 4 * 5 ) ) )

1

value stack operator stack
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

( ( 2 + 3 ) * ( 4 * 5 ) ) )

1

value stack operator stack
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

( ( 2 + 3 ) * ( 4 * 5 ) ) )

1

value stack operator stack
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

2 + 3 ) * ( 4 * 5 ) ) )

1

value stack operator stack
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

+ 3 ) * ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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) * ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

* ( 4 * 5 ) ) )

1
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

* ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm

*

) )

1

value stack operator stack

+

5

20



Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

Dijkstra's two-stack algorithm
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Value:  push onto the value stack. 

Operator:  push onto the operator stack. 

Left parenthesis:  ignore. 

Right parenthesis:  pop operator and two values; push the result of 

applying that operator to those values onto the operand stack. 

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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