
Analysis of Algorithms
CS 121: Data Structures

START RECORDING

Outline
• Attendance quiz

• Introduction

• Observations

• Mathematical models

• Order-of-growth classifications

• Theory of algorithms

• Memory

Attendance Quiz

Attendance Quiz: Creating ADTs
• Scan the QR code, or find today’s attendance quiz

under the “Quizzes” tab on Canvas

• Password: to be announced in class

• Implement a class, Luminosity, which includes the
listed methods

Attendance Quiz: Creating ADTs
• Write your name

• Implement a class, Luminosity, which includes the following
methods

public class Luminosity

Luminosity(int l) // Accepts luminosity values from 0 to 255

int getLuminosity() // Get l, the luminosity value

Luminosity brighter() // Brighter version of this Luminosity

Luminosity darker() // Darker version of this Luminosity

String toString() // String representation

boolean equals(Luminosity m) // Is this luminosity the same as m's ?

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

‣ introduction

‣ observations

‣mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

9

Running time

Analytic Engine

“ As soon as an Analytic Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will arise—By what course of calculation can these results be arrived at by
 the machine in the shortest time? ” — Charles Babbage (1864)

how many times do you
have to turn the crank?

Cast of characters

10

Programmer needs to develop
a working solution.

Client wants to solve
problem efficiently.

Theoretician wants
to understand.

Student might play
any or all of these
roles someday.

Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

11

this course

client gets poor performance because programmer 
did not understand performance characteristics

12

Some algorithmic successes

Discrete Fourier transform.

・Break down waveform of N samples into periodic components.

・Applications: DVD, JPEG, MRI, astrophysics, ….

・Brute force: N 2 steps.

・FFT algorithm: N log N steps, enables new technology.
Friedrich Gauss

1805

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

13

Some algorithmic successes

N-body simulation.

・Simulate gravitational interactions among N bodies.

・Brute force: N 2 steps.

・Barnes-Hut algorithm: N log N steps, enables new research. Andrew Appel  
PU '81

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

Q. Will my program be able to solve a large practical input?

Insight. [Knuth 1970s] Use scientific method to understand performance.

The challenge

14

Why is my program so slow ? Why does it run out of memory ?

15

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

・Observe some feature of the natural world.

・Hypothesize a model that is consistent with the observations.

・Predict events using the hypothesis.

・Verify the predictions by making further observations.

・Validate by repeating until the hypothesis and observations agree.

Principles.

・Experiments must be reproducible.

・Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

17

Example: 3-SUM

3-SUM. Given N distinct integers, how many triples sum to exactly zero?

Context. Deeply related to problems in computational geometry.

% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

% java ThreeSum 8ints.txt
4

a[i] a[j] a[k] sum

30 -40 10 0

30 -20 -10 0

-40 40 0 0

-10 0 10 0

1

2

3

4

public class ThreeSum
{
 public static int count(int[] a)
 {
 int N = a.length;
 int count = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;
 return count;
 }

 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 StdOut.println(count(a));
 }
}

18

3-SUM: brute-force algorithm

check each triple

for simplicity, ignore
integer overflow

Q. How to time a program?

A. Manual.

19

Measuring the running time

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

Q. How to time a program?

A. Automatic.

20

Measuring the running time

client code

public static void main(String[] args)
{
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 Stopwatch stopwatch = new Stopwatch();
 StdOut.println(ThreeSum.count(a));
 double time = stopwatch.elapsedTime();
 StdOut.println("elapsed time " + time);
}

 public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)

(part of stdlib.jar)

Run the program for various input sizes and measure running time.

21

Empirical analysis

Run the program for various input sizes and measure running time.

22

Empirical analysis

N time (seconds) †

250 0

500 0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

Standard plot. Plot running time T (N) vs. input size N.

23

Data analysis

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

ti
m

e
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

Log-log plot. Plot running time T (N) vs. input size N using log-log scale.

Regression. Fit straight line through data points: a N b.
Hypothesis. The running time is about 1.006 × 10 –10 × N 2.999 seconds.

24

Data analysis

power law

slope

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

ti
m

e
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

lg(T (N)) = b lg N + c
b = 2.999
c = -33.2103

T (N) = a N b, where a = 2 c

3 orders
of magnitude

25

Prediction and validation

Hypothesis. The running time is about 1.006 × 10 –10 × N 2.999 seconds.

Predictions.

・51.0 seconds for N = 8,000.

・408.1 seconds for N = 16,000.

Observations.

validates hypothesis!

N time (seconds) †

8,000 51.1

8,000 51

8,000 51.1

16,000 410.8

"order of growth" of running
time is about N3 [stay tuned]

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

Hypothesis. Running time is about a N b with b = lg ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

26

Doubling hypothesis

N time (seconds) † ratio lg ratio

250 0 –

500 0 4.8 2.3

1,000 0.1 6.9 2.8

2,000 0.8 7.7 2.9

4,000 6.4 8 3

8,000 51.1 8 3

seems to converge to a constant b ≈ 3

lg (6.4 / 0.8) = 3.0

T(2N)
T(N)

=
a(2N)b

aNb
= 2b

log2 (T(2N)
T(N)) = b

27

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of N) and solve for a.

Hypothesis. Running time is about 0.998 × 10 –10 × N 3 seconds.

N time (seconds) †

8,000 51.1

8,000 51

8,000 51.1

51.1 = a × 80003

⇒ a = 0.998 × 10 –10

almost identical hypothesis
to one obtained via linear regression

28

Experimental algorithmics

System independent effects.

・Algorithm.

・Input data.

System dependent effects.

・Hardware: CPU, memory, cache, …

・Software: compiler, interpreter, garbage collector, …

・System: operating system, network, other apps, …

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

determines constant
in power law

determines exponent
in power law

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

30

Mathematical models for running time

Total running time: sum of (cost × frequency) for all operations.

・Need to analyze program to determine set of operations.

・Cost depends on machine, compiler.

・Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Donald Knuth 
1974 Turing Award

Challenge. How to estimate constants.

Cost of basic operations

31

† Running OS X on MacBook Pro 2.2GHz with 2GB RAM

operation example nanoseconds †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating-point add a + b 4.6

floating-point multiply a * b 4.2

floating-point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129

...

Observation. Most primitive operations take constant time.

Caveat. Non-primitive operations often take more than constant time.

Cost of basic operations

32

operation example nanoseconds †

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6 N

2D array allocation new int[N][N] c7 N 2

novice mistake: abusive string concatenation

Q. How many instructions as a function of input size N ?

33

Example: 1-SUM

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0)
 count++;

operation frequency

variable declaration 2

assignment statement 2

less than compare N + 1

equal to compare N

array access N

increment N to 2 N

N array accesses

Q. How many instructions as a function of input size N ?

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment ½ N (N − 1) to N (N − 1)

tedious to count exactly

34

Example: 2-SUM

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥

35

Simplifying the calculations

“ It is convenient to have a measure of the amount of work involved
 in a computing process, even though it be a very crude one. We may
 count up the number of times that various elementary operations are
 applied in the whole process and then given them various weights.
 We might, for instance, count the number of additions, subtractions,
 multiplications, divisions, recording of numbers, and extractions
 of figures from tables. In the case of computing with matrices most
 of the work consists of multiplications and writing down numbers,
 and we shall therefore only attempt to count the number of
 multiplications and recordings. ” — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

{National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY
A number of methods of solving sets of linear equations and inverting matrices

are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known 'Gauss
elimination process', it is found that the errors are normally quite moderate: no
exponential build-up need occur.

Included amongst the methods considered is a generalization of Choleski's method
which appears to have advantages over other known methods both as regards
accuracy and convenience. This method may also be regarded as a rearrangement
of the elimination process.
THIS paper contains descriptions of a number of methods for solving sets
of linear simultaneous equations and for inverting matrices, but its main
concern is with the theoretical limits of accuracy that may be obtained in
the application of these methods, due to rounding-off errors.

The best known method for the solution of linear equations is Gauss's
elimination method. This is the method almost universally taught in
schools. It has, unfortunately, recently come into disrepute on the ground
that rounding off will give rise to very large errors. It has, for instance,
been argued by HoteUing (ref. 5) that in solving a set of n equations we
should keep nlog104 extra or 'guarding' figures. Actually, although
examples can be constructed where as many as «log102 extra figures
would be required, these are exceptional. In the present paper the
magnitude of the error is described in terms of quantities not considered
in HoteUing's analysis; from the inequalities proved here it can imme-
diately be seen that in all normal cases the Hotelling estimate is far too
pessimistic.

The belief that the elimination method and other 'direct' methods of
solution lead to large errors has been responsible for a recent search for
other methods which would be free from this weakness. These were
mainly methods of successive approximation and considerably more
laborious than the direct ones. There now appears to be no real advantage
in the indirect methods, except in connexion with matrices having special
properties, for example, where the vast majority of the coefficients are
very small, but there is at least one large one in each row.

The writer was prompted to cany out this research largely by the
practical work of L. Fox in applying the elimination method (ref. 2). Fox

 at Princeton U
niversity Library on Septem

ber 20, 2011
qjm

am
.oxfordjournals.org

D
ow

nloaded from

Cost model. Use some basic operation as a proxy for running time.

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment ½ N (N − 1) to N (N − 1)

36

Simplification 1: cost model

cost model = array accesses

(we assume compiler/JVM do not
optimize any array accesses away!)

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥

・Estimate running time (or memory) as a function of input size N.

・Ignore lower order terms.
– when N is large, terms are negligible
– when N is small, we don't care

Ex 1. ⅙ N 3 + 20 N + 16 ~ ⅙ N 3

Ex 2. ⅙ N 3 + 100 N 4/3 + 56 ~ ⅙ N 3

Ex 3. ⅙ N 3 - ½ N 2 + ⅓ N ~ ⅙ N 3

37

Simplification 2: tilde notation

discard lower-order terms
(e.g., N = 1000: 166.67 million vs. 166.17 million)

Leading-term approximation

N 3/6

N 3/6 ! N 2/2 + N /3

166,167,000

1,000

166,666,667

N

・Estimate running time (or memory) as a function of input size N.

・Ignore lower order terms.
– when N is large, terms are negligible
– when N is small, we don't care

38

Simplification 2: tilde notation

operation frequency tilde notation

variable declaration N + 2 ~ N

assignment statement N + 2 ~ N

less than compare ½ (N + 1) (N + 2) ~ ½ N 2

equal to compare ½ N (N − 1) ~ ½ N 2

array access N (N − 1) ~ N 2

increment ½ N (N − 1) to N (N − 1) ~ ½ N 2 to ~ N 2

Q. Approximately how many array accesses as a function of input size N ?

A. ~ N 2 array accesses, simplified from N(N - 1) = N2 - N

Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

39

Example: 2-SUM

"inner loop"

Q. Approximately how many array accesses as a function of input size N ?

A. ~ ½ N 3 array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

40

Example: 3-SUM

�
N

3

⇥
=

N(N � 1)(N � 2)
3!

⇥ 1
6
N3

"inner loop"

In principle, accurate mathematical models are available.

In practice,

・Formulas can be complicated.

・Advanced mathematics might be required.

・Exact models best left for experts.

Bottom line. We use approximate models in this course: T(N) ~ c N 3.

TN = c1 A + c2 B + c3 C + c4 D + c5 E
A = array access
B = integer add
C = integer compare
D = increment
E = variable assignment

Mathematical models for running time

41

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Definition. If f (N) ~ c g(N) for some constant c > 0, then the order of growth

of f (N) is g(N).

・Ignores leading coefficient.

・Ignores lower-order terms.

Ex. The order of growth of the running time of 3-SUM is N 3, simplified

from ~½ N 3

Typical usage. With running times.

Common order-of-growth classifications

43

where leading coefficient
depends on machine, compiler, JVM, ...

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

3-SUM

Good news. The set of functions

 1, log N, N, N log N, N 2, N 3, and 2N

suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

44

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K
ti

m
e

ti
m

e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

Common order-of-growth classifications

45

order of
growth name typical code framework description example T(2N) / T(N)

1 constant a = b + c; statement
add two
numbers 1

log N logarithmic
while (N > 1)

{ N = N / 2; ... }
divide in half binary search ~ 1

N linear
for (int i = 0; i < N; i++)

{ ... }
loop

find the
maximum 2

N log N linearithmic [see mergesort lecture]
divide

and conquer
mergesort ~ 2

N 2 quadratic
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 { ... }

double loop
check all

pairs 4

N 3 cubic

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)
 { ... }

triple loop
check all
triples 8

2N exponential [see combinatorial search lecture]
exhaustive

search
check all
subsets T(N)

46

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hi

successful search for 33

47

Binary search: Java implementation

Trivial to implement?

・First binary search published in 1946.

・First bug-free one in 1962.

・Bug in Java's Arrays.binarySearch() discovered in 2006.

Invariant. If key appears in the array a[], then a[lo] ≤ key ≤ a[hi].

 public static int binarySearch(int[] a, int key)
 {
 int lo = 0, hi = a.length-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

one "3-way compare"

48

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 + lg N key compares to search in

a sorted array of size N.

Def. T (N) = # key compares to binary search a sorted subarray of size ≤ N.

Binary search recurrence. T (N) ≤ T (N / 2) + 1 for N > 1, with T (1) = 1.

Pf sketch. [assume N is a power of 2]

left or right half
(floored division)

possible to implement with one
2-way compare (instead of 3-way)

 T (N) ≤ T (N / 2) + 1 [given]

≤ T (N / 4) + 1 + 1 [apply recurrence to first term]

≤ T (N / 8) + 1 + 1 + 1 [apply recurrence to first term]

⋮

≤ T (N / N) + 1 + 1 + … + 1 [stop applying, T(1) = 1]

= 1 + lg N

START RECORDING

Attendance Quiz

Attendance Quiz: Order of Growth
• Scan the QR code, or find today’s attendance

quiz under the “Quizzes” tab on Canvas

• Password: to be announced in class
order of
growth name typical code framework description example T(2N) / T(N)

1 Constant a = b + c; statement
add two
numbers 1

? ? for (int i = 0; i < N; i++)
{ ... } loop

find the
maximum 2

? ? while (N > 1)
{ N = N / 2; ... } divide in half binary search ~ 1

? ?
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)

 { ... }

triple loop
check all
triples 8

? ?
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 { ... }

double loop
check all

pairs 4

Attendance Quiz: Order of Growth

• Write your name

• Fill in the “order of growth” and “name” columns
order of
growth name typical code framework description example T(2N) / T(N)

1 Constant a = b + c; statement
add two
numbers 1

? ? for (int i = 0; i < N; i++)
{ ... } loop

find the
maximum 2

? ? while (N > 1)
{ N = N / 2; ... } divide in half binary search ~ 1

? ?
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)

 { ... }

triple loop
check all
triples 8

? ?
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 { ... }

double loop
check all

pairs 4

Binary Search Demo

Last Lecture…
• We saw a black-box approach for measuring the

growth rate of an algorithm (i.e., doubling analysis)

• We saw a code analysis approach for determining the
growth rate of an algorithm (i.e., counting operations)

• This lecture: is an algorithm’s growth rate optimal? Or
could a better algorithm exist?

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Best case. Lower bound on cost.

・Determined by “easiest” input.

・Provides a goal for all inputs.

Worst case. Upper bound on cost.

・Determined by “most difficult” input.

・Provides a guarantee for all inputs.

Average case. Expected cost for random input.

・Need a model for “random” input.

・Provides a way to predict performance.

Types of analyses

56

Ex 1. Array accesses for brute-force 3-SUM.

Best: ~ ½ N 3

Average: ~ ½ N 3

Worst: ~ ½ N 3

Ex 2. Compares for binary search.

Best: ~ 1

Average: ~ lg N

Worst: ~ lg N

this course

Best case. Lower bound on cost.

Worst case. Upper bound on cost.

Average case. “Expected” cost.

Actual data might not match input model?

・Need to understand input to effectively process it.

・Approach 1: design for the worst case.

・Approach 2: randomize, depend on probabilistic guarantee.

Types of analyses

57

Goals.

・Establish “difficulty” of a problem.

・Develop “optimal” algorithms.

Approach.

・Suppress details in analysis: analyze “to within a constant factor.”

・Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.

Lower bound. Proof that no algorithm can do better.

Optimal algorithm. Lower bound = upper bound (to within a constant factor).

Theory of algorithms

58

59

Commonly-used notations in the theory of algorithms

notation provides example shorthand for used to

Big Theta
asymptotic

order of growth Θ(N2)

½ N 2

10 N 2

 5 N 2 + 22 N log N + 3N
⋮

classify
algorithms

Big Oh Θ(N2) and smaller O(N2)

10 N 2

100 N

 22 N log N + 3 N
⋮

develop
upper bounds

Big Omega Θ(N2) and larger Ω(N2)

½ N 2

N 5

 N 3 + 22 N log N + 3 N
⋮

develop
lower bounds

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. FIBONACCI = “What is the Nth element in the sequence?”

Upper bound. A specific algorithm.

・Ex. Recursive algorithm for FIBONACCI

・Running time of the optimal algorithm for FIBONACCI is O(2N).

Theory of algorithms: Fibonacci example

60

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. FIBONACCI = “What is the Nth element in the sequence?”

Upper bound. A specific algorithm.

・Ex. Improved dynamic algorithm for FIBONACCI.

・Running time of the optimal algorithm for FIBONACCI is O(N).

Lower bound. Proof that no algorithm can do better.

・Do we need to compute the sequence, or is there a closed-form

solution (i.e., can we jump right to the answer with a formula)? Yes!

・Running time of the optimal algorithm for FIBONACCI is Ω(1).

Theory of algorithms: Fibonacci example

61

https://en.wikipedia.org/w/index.php?title=Fibonacci_number#Closed-form_expression

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. FIBONACCI = “What is the Nth element in the sequence?”

Upper bound. A specific algorithm.

・Ex. Improved closed-form solution for FIBONACCI

・Running time of the optimal algorithm for FIBONACCI is O(1).

Lower bound. Proof that no algorithm can do better.

・Do we need to compute the sequence, or is there a closed-form

solution (i.e., can we jump right to the answer with a formula)? Yes!

・Running time of the optimal algorithm for FIBONACCI is Ω(1).

Optimal algorithm.

・Lower bound equals upper bound (to within a constant factor).

・Ex. Closed form for FIBONACCI is optimal: running time is Θ(1).

Theory of algorithms: Fibonacci example

62

https://stackoverflow.com/a/53244707/3043071
https://en.wikipedia.org/w/index.php?title=Fibonacci_number#Closed-form_expression

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. 1-SUM = “Is there a 0 in the array? ”

Upper bound. A specific algorithm.

・Ex. Brute-force algorithm for 1-SUM: Look at every array entry.

・Running time of the optimal algorithm for 1-SUM is O(N).

Lower bound. Proof that no algorithm can do better.

・Ex. Have to examine all N entries (any unexamined one might be 0).

・Running time of the optimal algorithm for 1-SUM is Ω(N).

Optimal algorithm.

・Lower bound equals upper bound (to within a constant factor).

・Ex. Brute-force algorithm for 1-SUM is optimal: its running time is Θ(N).

Theory of algorithms: 1-SUM example

63

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. 3-SUM.

Upper bound. A specific algorithm.

・Ex. Brute-force algorithm for 3-SUM.

・Running time of the optimal algorithm for 3-SUM is O(N 3).

Theory of algorithms: 3-SUM example

64

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. 3-SUM.

Upper bound. A specific algorithm.

・Ex. Improved algorithm for 3-SUM.

・Running time of the optimal algorithm for 3-SUM is O(N
2 log N).

Theory of algorithms: 3-SUM example

65

Algorithm.

・Step 1: Sort the N (distinct) numbers.

・Step 2: For each pair of numbers a[i]

and a[j], binary search for -(a[i] + a[j]).

Analysis. Order of growth is N 2 log N.

・Step 1: N 2 with insertion sort.

・Step 2: N 2 log N with binary search.

An N2 log N algorithm for 3-SUM

66

only count if
a[i] < a[j] < a[k]

to avoid
double counting

binary search
 (-40, -20) 60

 (-40, -10) 50

 (-40, 0) 40

 (-40, 5) 35

 (-40, 10) 30

 ⋮ ⋮

 (-20, -10) 30

 ⋮ ⋮

 (-10, 0) 10

 ⋮ ⋮

 (10, 30) -40

 (10, 40) -50

 (30, 40) -70

input
 30 -40 -20 -10 40 0 10 5

sort
 -40 -20 -10 0 5 10 30 40

Comparing programs

Hypothesis. The sorting-based N 2 log N algorithm for 3-SUM is significantly

faster in practice than the brute-force N 3 algorithm.

Guiding principle. Typically, better order of growth ⇒ faster in practice.
67

N time (seconds)

1,000 0.14

2,000 0.18

4,000 0.34

8,000 0.96

16,000 3.67

32,000 14.88

64,000 59.16

N time (seconds)

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

ThreeSum.java, N3

ThreeSumDeluxe.java, N2log(N)

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. 3-SUM.

Upper bound. A specific algorithm.

・Ex. Improved algorithm for 3-SUM.

・Running time of the optimal algorithm for 3-SUM is O(N
2 log N).

Lower bound. Proof that no algorithm can do better.

・Ex. Have to examine all N entries to solve 3-SUM.

・Running time of the optimal algorithm for solving 3-SUM is Ω(N).

Open problems.

・Optimal algorithm for 3-SUM?

・Subquadratic algorithm for 3-SUM?

・Quadratic lower bound for 3-SUM?

Theory of algorithms: 3-SUM example

68

Big O: The upper bound

69

5n + 5 ∈ O(n2)? Yes
5n + 5 ∈ O(n)? Yes

f(n) ∈ O(g(n)) as n → ∞
when f(n) ≤ M ⋅ g(n) for all n ≥ some no

5n + 5 ∈ O(log(n))? No
5n + 5 ∈ O(1)? No

Big Ω: The lower bound

70

5n + 5 ∈ Ω(n2)? No
5n + 5 ∈ Ω(n)? Yes

f(n) ∈ Ω(g(n)) as n → ∞
when f(n) ≥ M ⋅ g(n) for all n ≥ some no

5n + 5 ∈ Ω(log(n))? Yes
5n + 5 ∈ Ω(1)? Yes

Big Θ: The tight bound

71

5n + 5 ∈ Θ(n2)? No
5n + 5 ∈ Θ(n)? Yes

f(n) ∈ Θ(g(n)) when f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))

5n + 5 ∈ Θ(log(n))? No
5n + 5 ∈ Θ(1)? No

Start.

・Develop an algorithm.

・Prove a lower bound.

Gap?

・Lower the upper bound (discover a new algorithm).

・Raise the lower bound (more difficult).

Golden Age of Algorithm Design.

・1970s-.

・Steadily decreasing upper bounds for many important problems.

・Many known optimal algorithms.

Caveats.

・Overly pessimistic to focus on worst case?

・Need better than “to within a constant factor” to predict performance.

Algorithm design approach

72

notation provides example shorthand for used to

Tilde leading term ~ 10 N 2

10 N 2

10 N 2 + 22 N log N

10 N 2 + 2 N + 37

provide
approximate

model

Big Theta
asymptotic

order of growth
Θ(N2)

½ N 2

10 N 2

 5 N 2 + 22 N log N + 3N

classify
algorithms

Big Oh Θ(N2) and smaller O(N2)

10 N 2

100 N

 22 N log N + 3 N

develop
upper bounds

Big Omega Θ(N2) and larger Ω(N2)
½ N 2

N 5

 N 3 + 22 N log N + 3 N

develop
lower bounds

Common mistake. Interpreting big-Oh as an approximate model,

conflating big-Oh and big-Theta.

In a job interview: “What is the big-Oh of this algorithm?”

Commonly-used notations in the theory of algorithms

73

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ observations

‣mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

75

Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 220 bytes.

Gigabyte (GB). 1 billion or 230 bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

・Can address more memory.

・Pointers use more space. some JVMs "compress" ordinary object
pointers to 4 bytes to avoid this cost

NIST most computer scientists

76

Typical memory usage for primitive types and arrays

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

primitive types

type bytes

char[] 2 N + 24

int[] 4 N + 24

double[] 8 N + 24

one-dimensional arrays

type bytes

char[][] ~ 2 M N

int[][] ~ 4 M N

double[][] ~ 8 M N

two-dimensional arrays

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

77

Typical memory usage for objects in Java

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
 private Item item;
 private Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

4 bytes (int)

4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)

Total memory usage for a data type value:

・Primitive type: 4 bytes for int, 8 bytes for double, …

・Object reference: 8 bytes.

・Array: 24 bytes + memory for each array entry.

・Object: 16 bytes + memory for each instance variable.

・Padding: round up to multiple of 8 bytes.

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference,

count memory (recursively) for referenced object.

78

Typical memory usage summary

+ 8 extra bytes per inner class object
(for reference to enclosing class)

Classmexer library. Measure memory usage by querying JVM.

79

Memory profiler

 import com.javamex.classmexer.MemoryUtil;

 public class Memory {
 public static void main(String[] args) {
 Date date = new Date(12, 31, 1999);
 StdOut.println(MemoryUtil.memoryUsageOf(date));
 String s = "Hello, World";
 StdOut.println(MemoryUtil.memoryUsageOf(s));
 StdOut.println(MemoryUtil.deepMemoryUsageOf(s));
 }
 }

deep

shallow

% javac -cp .:classmexer.jar Memory.java
% java -cp .:classmexer.jar -javaagent:classmexer.jar Memory
32
40
88

http://www.javamex.com/classmexer

use -XX:-UseCompressedOops
on OS X to match our model2N + 64

don't count char[]

80

Example

Q. How much memory does WeightedQuickUnionUF use as a function of N ?
 Use tilde notation to simplify your answer.

A. 8 N + 88 ~ 8 N bytes.

public class WeightedQuickUnionUF
{
 private int[] id;
 private int[] sz;
 private int count;

 public WeightedQuickUnionUF(int N)
 {
 id = new int[N];
 sz = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 for (int i = 0; i < N; i++) sz[i] = 1;
 }
 ...
}

16 bytes
(object overhead)

4 bytes (int)

4 bytes (padding)

8N + 88 bytes

8 + (4N + 24) bytes each
(reference + int[] array)

Year Introduced Model Default Memory
1984 Original Apple Macintosh 128 KB
1986 Macintosh Plus 1 MB
1990 Macintosh LC 2MB
1998 iMac G3 32MB
2002 iMac G4 128 MB
2004 iMac G4 256 MB
2006 Intel iMac 512 MB
2008 Intel iMac 1 GB
2010 Intel iMac 4 GB
2012 Intel iMac 8 GB
2014 Intel iMac 8 GB
2017 Intel iMac 8 GB
2019 Intel iMac 8 GB
2021 M1 iMac 8 GB
2023 M2 Mac Mini 8 GB

Memory Over Time

http://www.allaboutapple.com/

David Fuchs and Rama, Wikimedia

https://apple-history.com/imac_coreduo

https://www.apple.com

http://www.allaboutapple.com/
https://commons.wikimedia.org/wiki/File:IMac_G3_Bondi_Blue,_three-quarters_view.png
https://apple-history.com/imac_coreduo
https://www.apple.com

Turning the crank: summary

Empirical analysis.

・Execute program to perform experiments.

・Assume power law and formulate a hypothesis for running time.

・Model enables us to make predictions.

Mathematical analysis.

・Analyze algorithm to count frequency of operations.

・Use tilde notation to simplify analysis.

・Model enables us to explain behavior.

Scientific method.

・Mathematical model is independent of a particular system;

applies to machines not yet built.

・Empirical analysis is necessary to validate mathematical models

and to make predictions.

82

Comparing Arrays to other Data Structures

• Using an array, what is the time complexity of:

• Updating an element, given the index?

• Growing the length of the array?

• Locate an element (sorted or unsorted)?

• We’ll learn about data structures that:

• Grow with O(1) – linked lists, stacks, queues, and
dictionaries (AKA, maps, symbol tables)

• Locate an element with O(1) – dictionaries

If time:
Performance Slides

