Undirected Graphs

CS 121: Data Structures

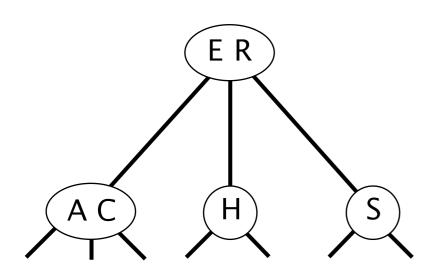
START RECORDING

Attendance Quiz

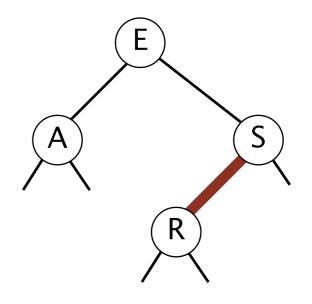
Attendance Quiz: Balanced Trees

 Scan the QR code, or find today's attendance quiz under the "Quizzes" tab on Canvas

Password: to be announced



2-3 Tree

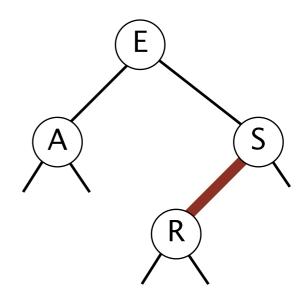


Red-Black Tree

Attendance Quiz: Balanced Trees

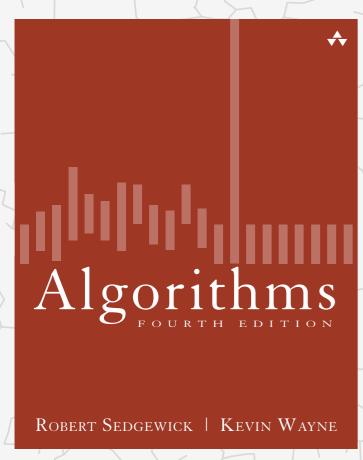
- Write your name and the date
- Working with a partner:
 - Draw the 2-3 tree as a red-black tree
 - Draw the red-black tree as 2-3 tree





Red-Black Tree

Algorithms



http://algs4.cs.princeton.edu

4.1 UNDIRECTED GRAPHS

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

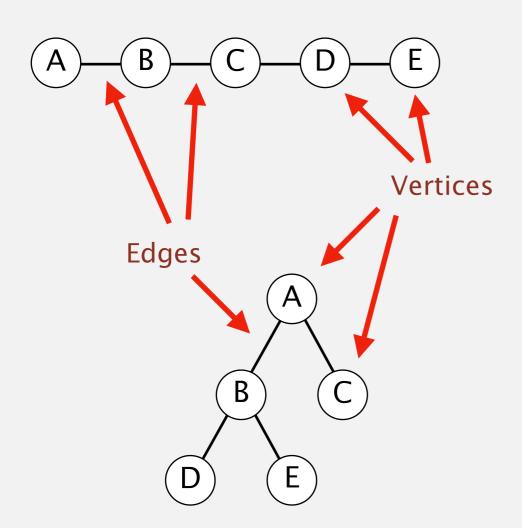
4.1 UNDIRECTED GRAPHS

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

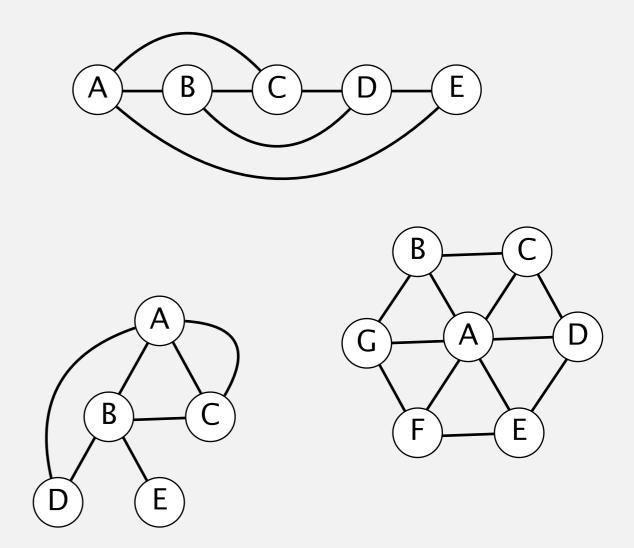
Undirected graphs

Graph. Set of vertices connected pairwise by edges.

What data structures are these?



Linked lists, BSTs, and many other data structures are graphs with structural constraints



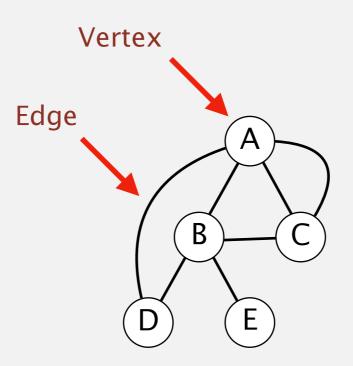
...but graphs can take many forms

Undirected graphs

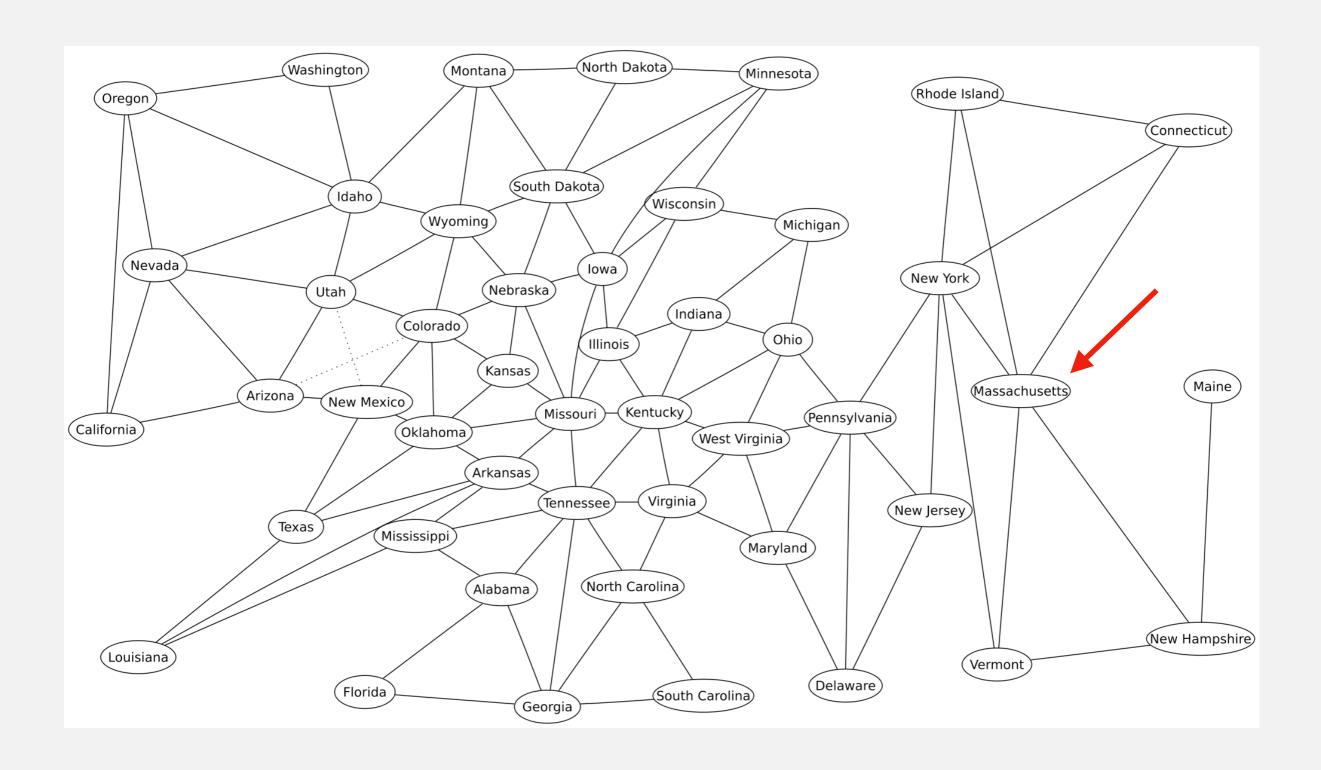
Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

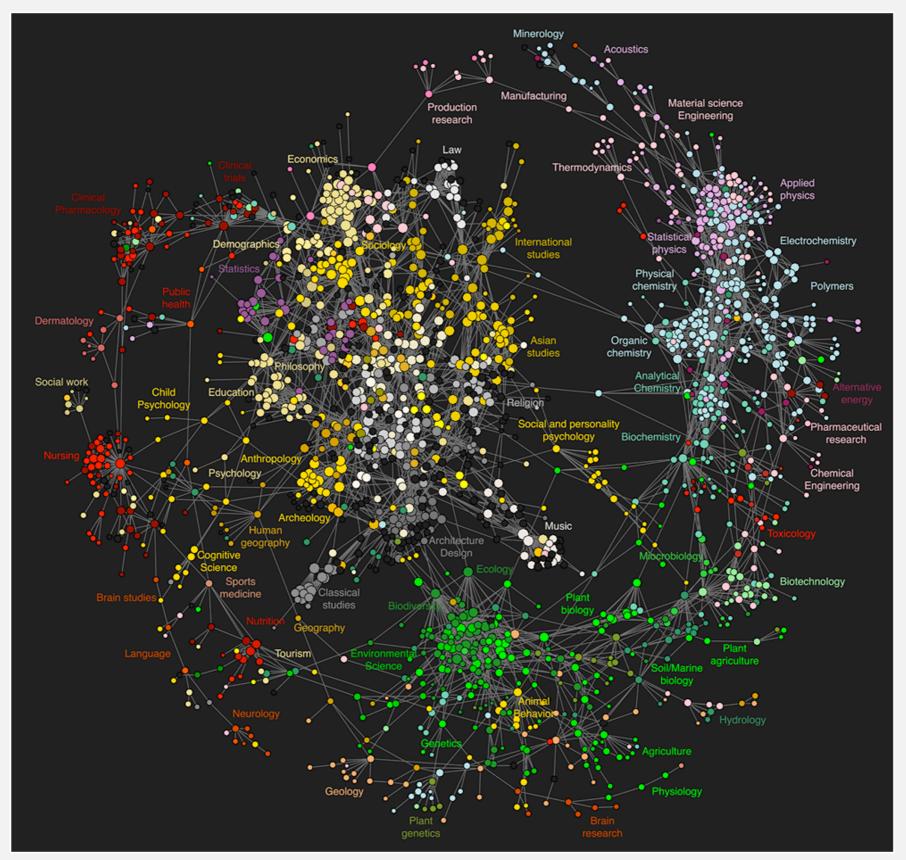
- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- · Challenging branch of computer science and discrete math.



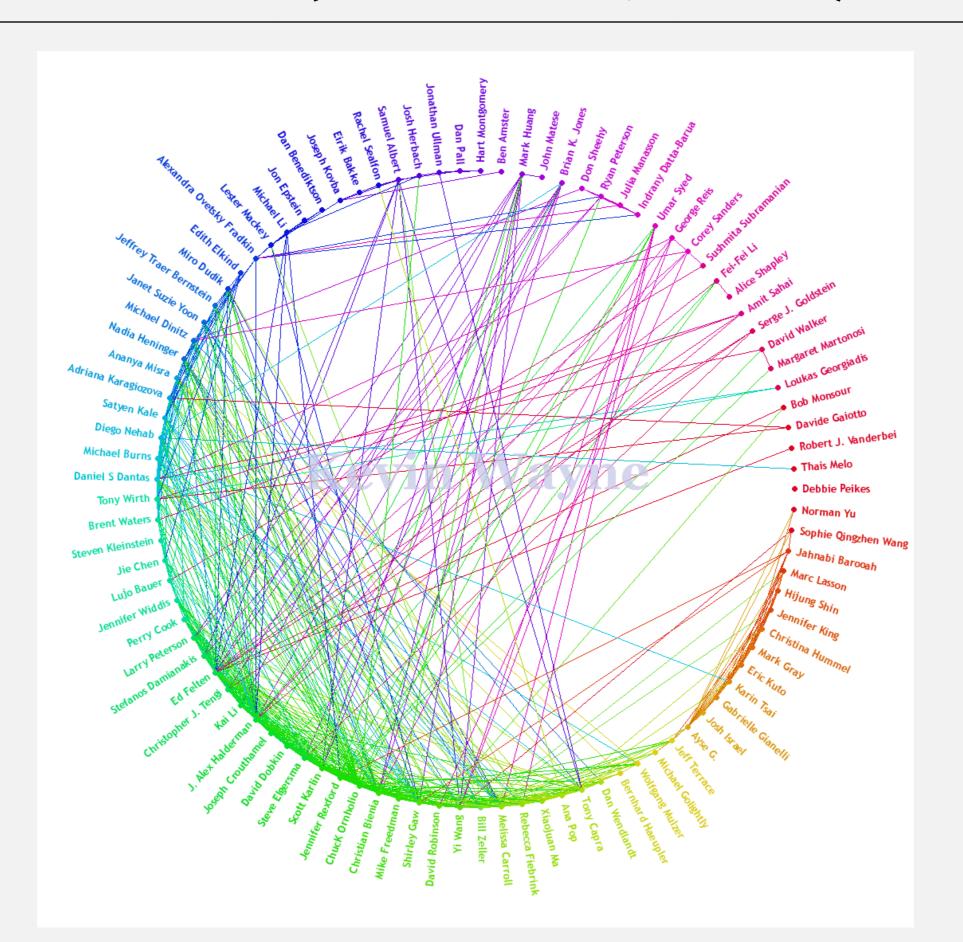
Border graph of 48 contiguous United States



Map of science clickstreams



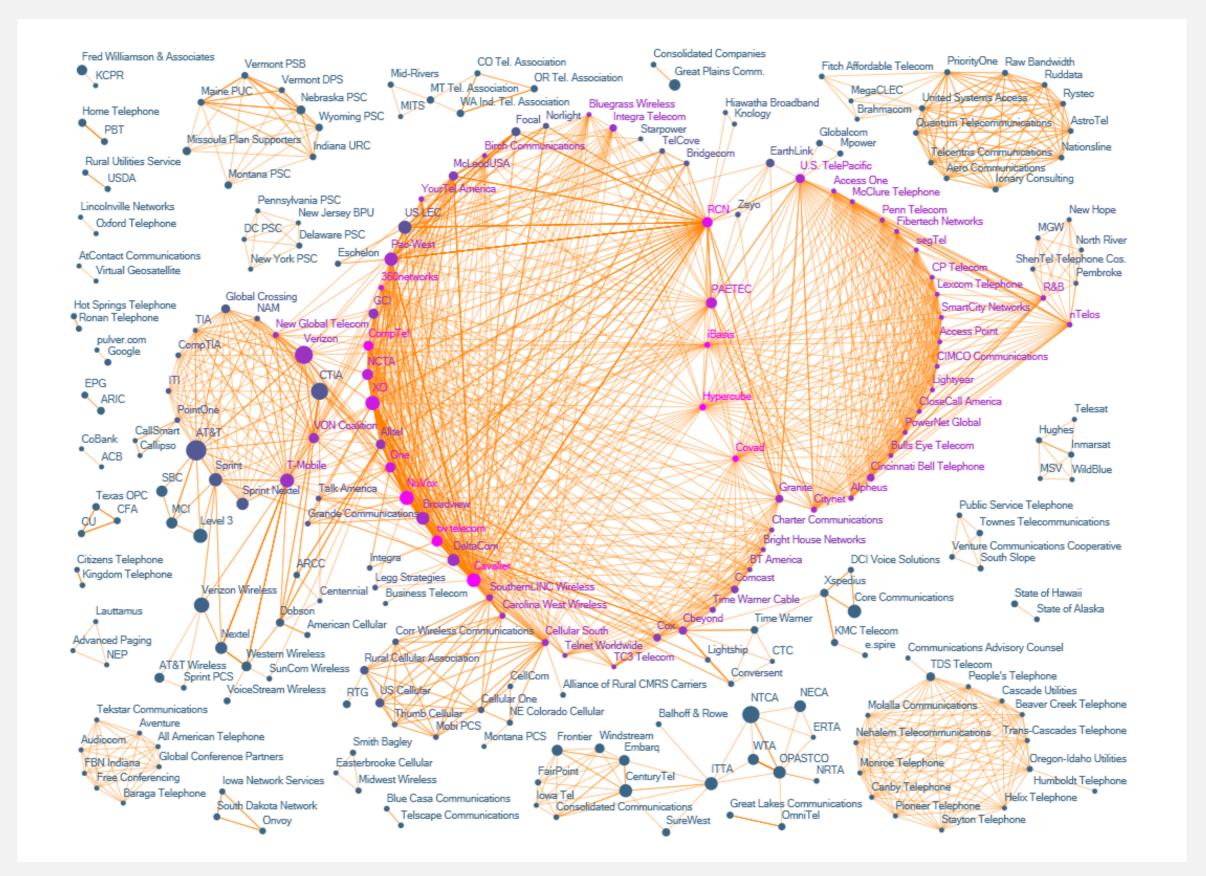
Kevin's facebook friends (Princeton network, circa 2005)



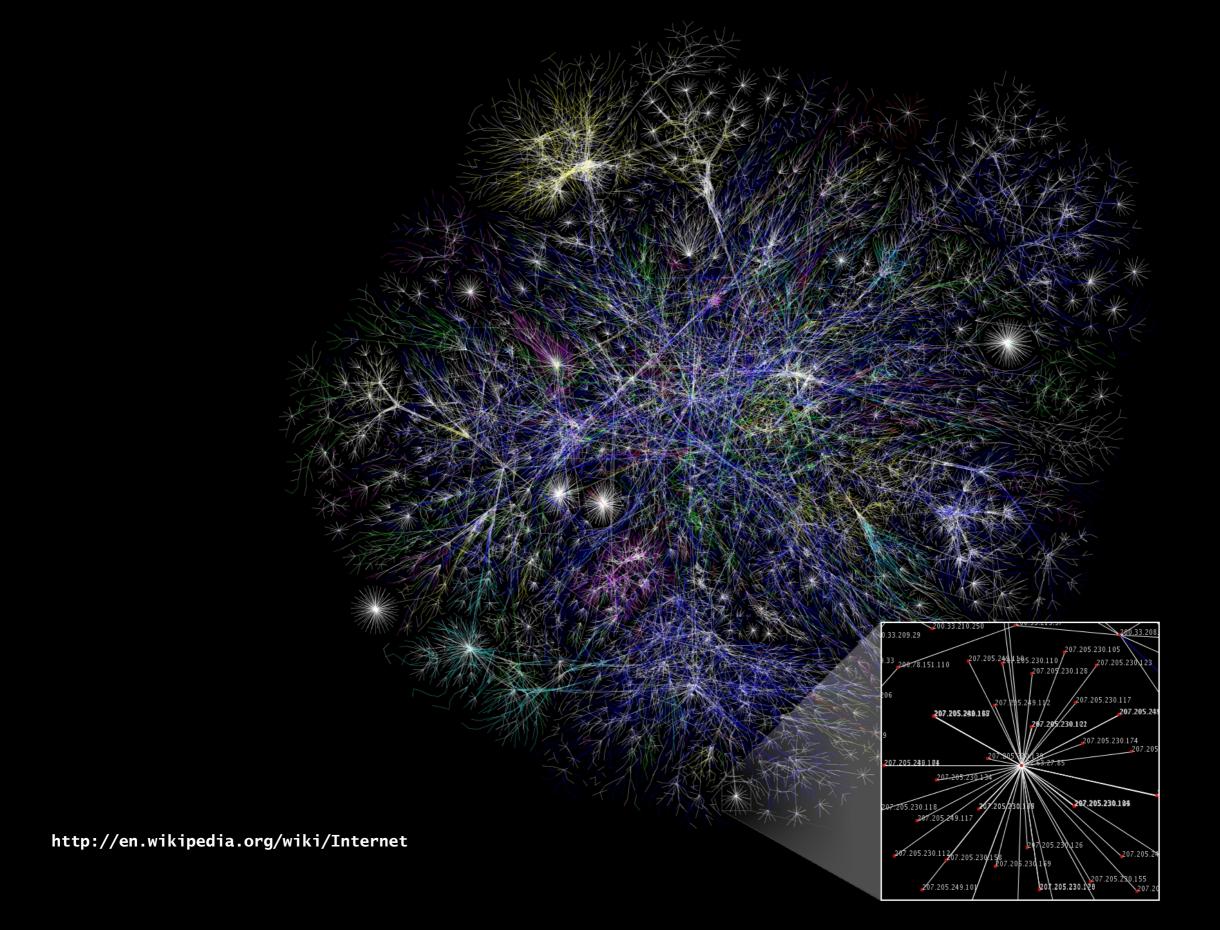
10 million Facebook friends

"Visualizing Friendships" by Paul Butler

The evolution of FCC lobbying coalitions



The Internet as mapped by the Opte Project



Graph applications

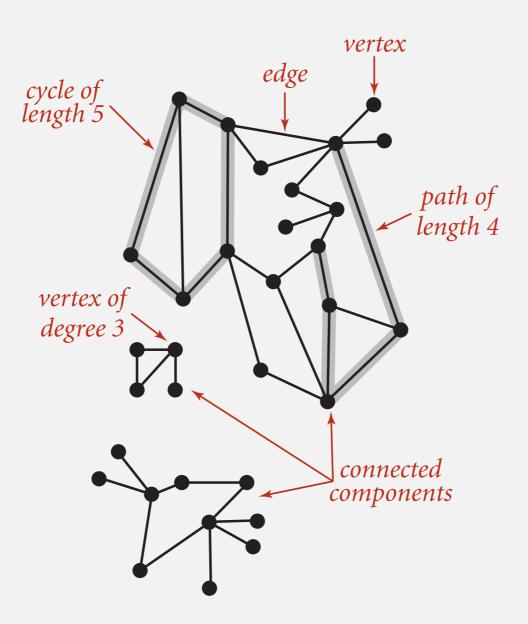
graph	vertex	edge	
communication	telephone, computer	fiber optic cable	
circuit	gate, register, processor	wire	
mechanical	joint	rod, beam, spring	
financial	stock, currency	transactions	
transportation	intersection	street	
internet	class C network	connection	
game	board position	legal move	
social relationship	person	friendship	
neural network	neuron	synapse	
protein network	protein protein-protein interacti		
molecule	atom bond		

Graph terminology

Path. Sequence of vertices connected by edges.

Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.



Some graph-processing problems

problem	description	
s-t path	Is there a path between s and t?	
shortest s-t path	What is the shortest path between s and t?	
cycle	Is there a cycle in the graph?	
Euler cycle	Is there a cycle that uses each edge exactly once?	
Hamilton cycle	Is there a cycle that uses each vertex exactly once?	
connectivity	Is there a way to connect all of the vertices?	
biconnectivity	Is there a vertex whose removal disconnects the graph?	
planarity	Can the graph be drawn in the plane with no crossing edges?	
graph isomorphism	Do two adjacency lists represent the same graph?	

Challenge. Which graph problems are easy? difficult? intractable?

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

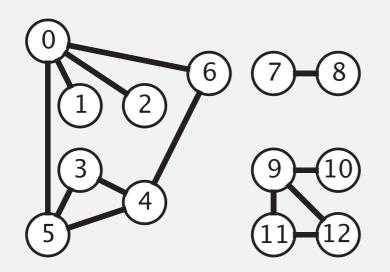
http://algs4.cs.princeton.edu

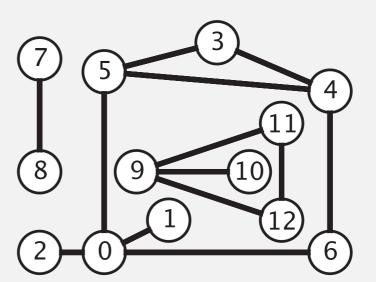
4.1 UNDIRECTED GRAPHS

- · introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Graph representation

Graph drawing. Provides intuition about the structure of the graph.





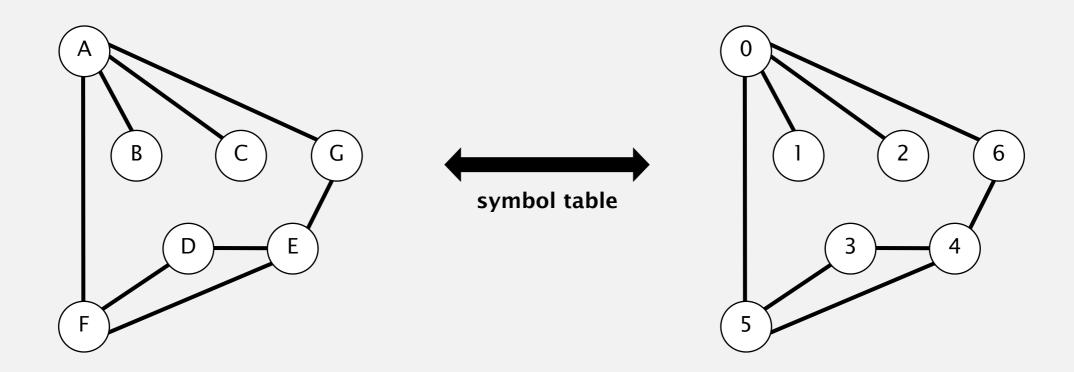
two drawings of the same graph

Caveat. Intuition can be misleading.

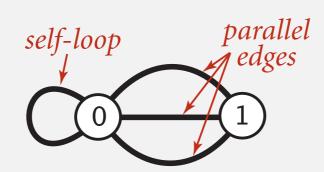
Graph representation

Vertex representation.

- This lecture: use integers between 0 and V-1.
- Applications: convert between names and integers with symbol table.



Anomalies.



Graph API

```
public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

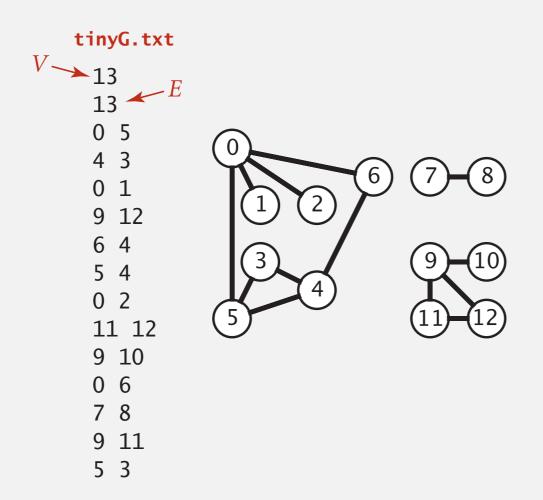
int V() number of vertices

int E() number of edges
```

```
// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
   int degree = 0;
   for (int w : G.adj(v))
      degree++;
   return degree;
}
```

Graph API: sample client

Graph input format.



```
% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
:
12-11
12-9
```

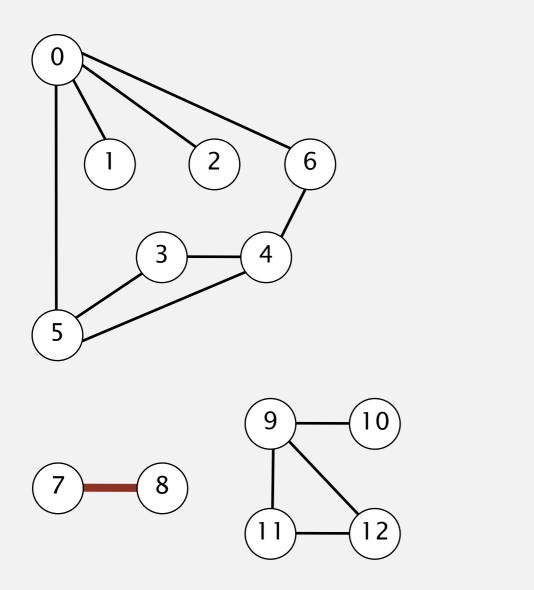
```
In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
   for (int w : G.adj(v))
        StdOut.println(v + "-" + w);</pre>
read graph from input stream

print out each edge (twice)
```

Graph representation: set of edges

Maintain a list of the edges (linked list or array).



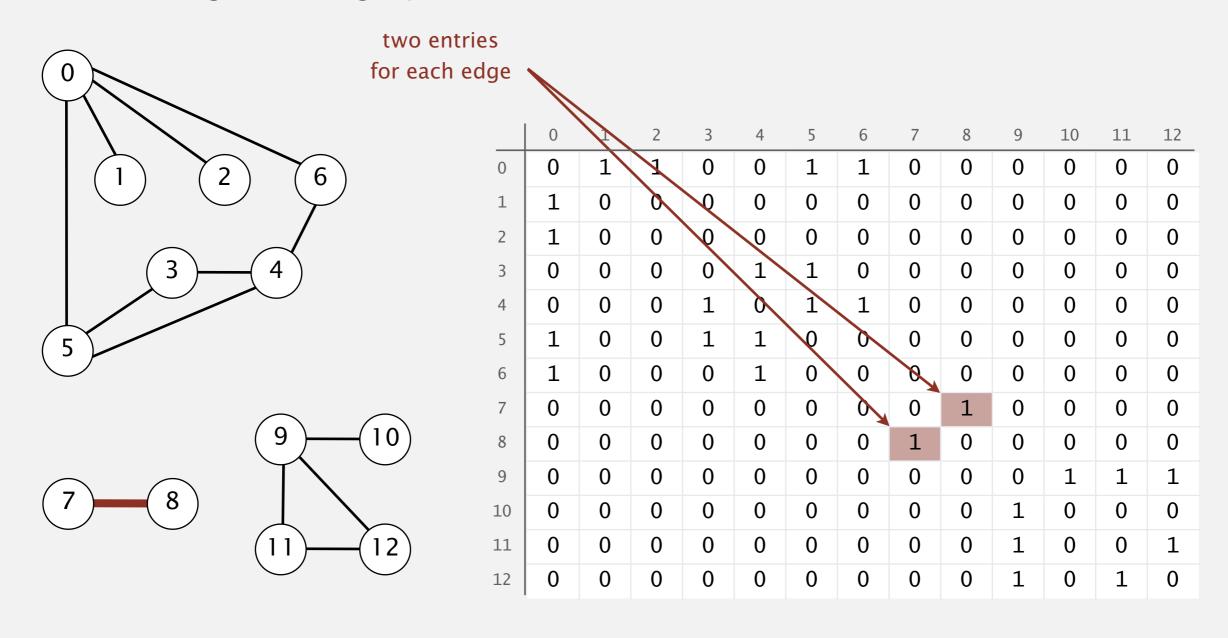
0	1
0	2
0	5
0	6
3	4
3	5
4	5
4	6
7	8
9	10
9	11
9	12
11	12

- Q. How long to iterate over vertices adjacent to v?
- **A.** O(E)

Graph representation: adjacency matrix

Maintain a two-dimensional *V*-by-*V* boolean array;

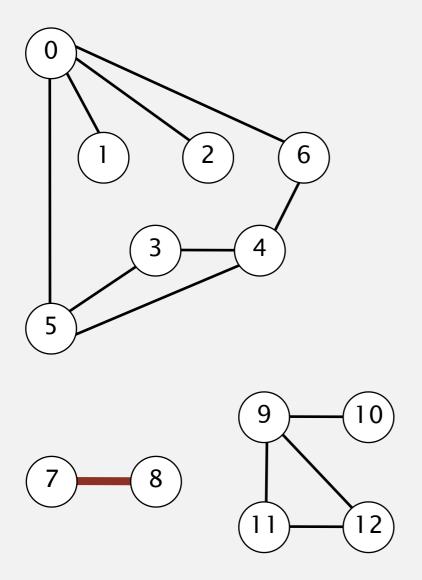
for each edge v-w in graph: adj[v][w] = adj[w][v] = true.

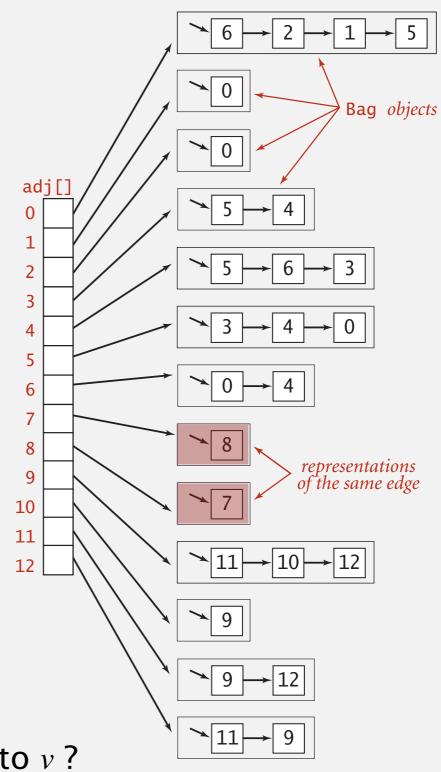


- Q. How long to iterate over vertices adjacent to v?
- **A.** O(V)

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.





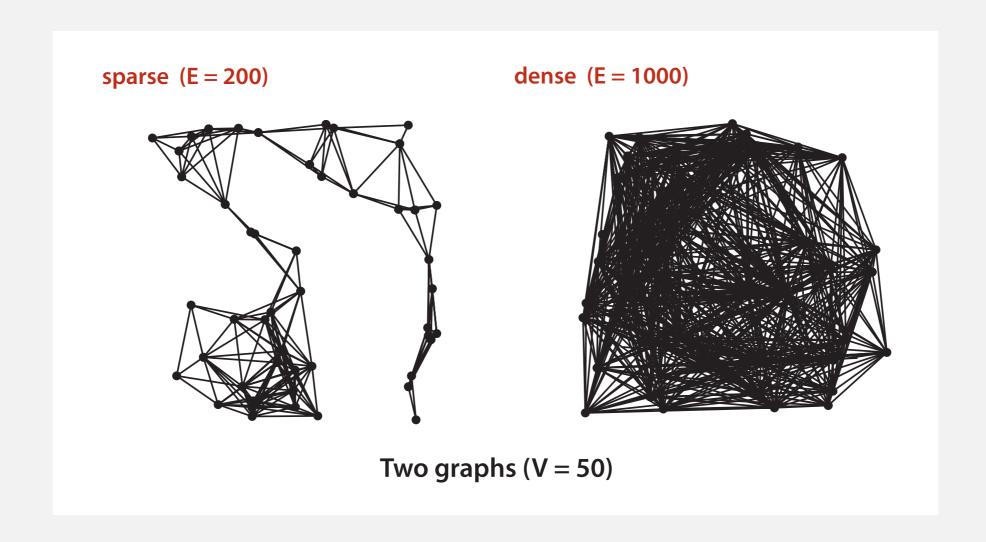
- Q. How long to iterate over vertices adjacent to v?
- A. O(degree(v))

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.

huge number of vertices, small average vertex degree



Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.

huge number of vertices, small average vertex degree

representation	space	add edge	edge between v and w?	iterate over vertices adjacent to v?
list of edges	E	1	E	E
adjacency matrix	V^2	1 *	1	V
adjacency lists	E + V	1	degree(v)	degree(v)

^{*} disallows parallel edges

Adjacency-list graph representation: Java implementation

```
public class Graph
{
   private final int V;
                                                         adjacency lists
   private Bag<Integer>[] adj;
                                                         (using Bag data type)
   public Graph(int V)
      this.V = V;
                                                         create empty graph
       adj = (Bag<Integer>[]) new Bag[V];
                                                         with V vertices
       for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
   }
   public void addEdge(int v, int w)
                                                         add edge v-w
                                                         (parallel edges and
      adj[v].add(w);
                                                         self-loops allowed)
       adj[w].add(v);
   }
                                                         iterator for vertices adjacent to v
   public Iterable<Integer> adj(int v)
   { return adj[v]; }
```

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

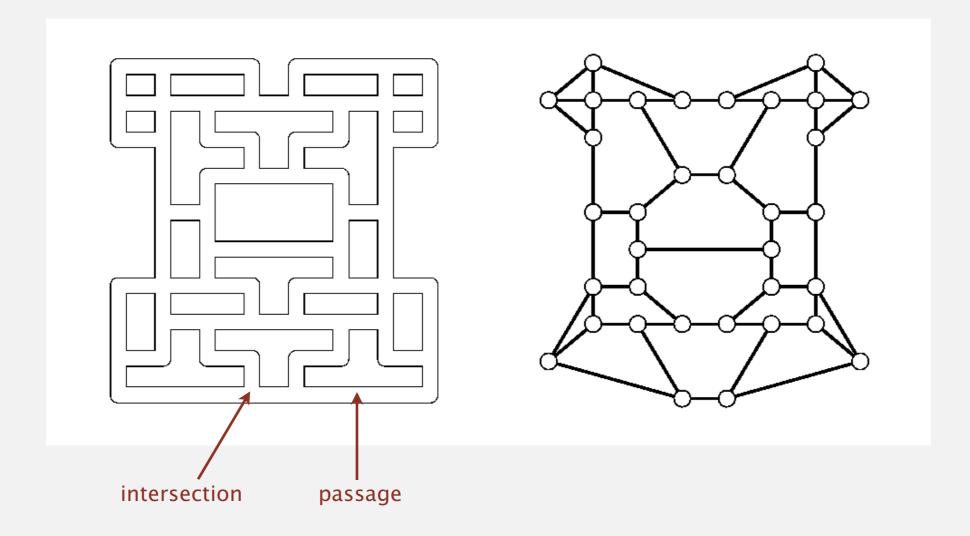
4.1 UNDIRECTED GRAPHS

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Maze exploration

Maze graph.

- Vertex = intersection.
- Edge = passage.

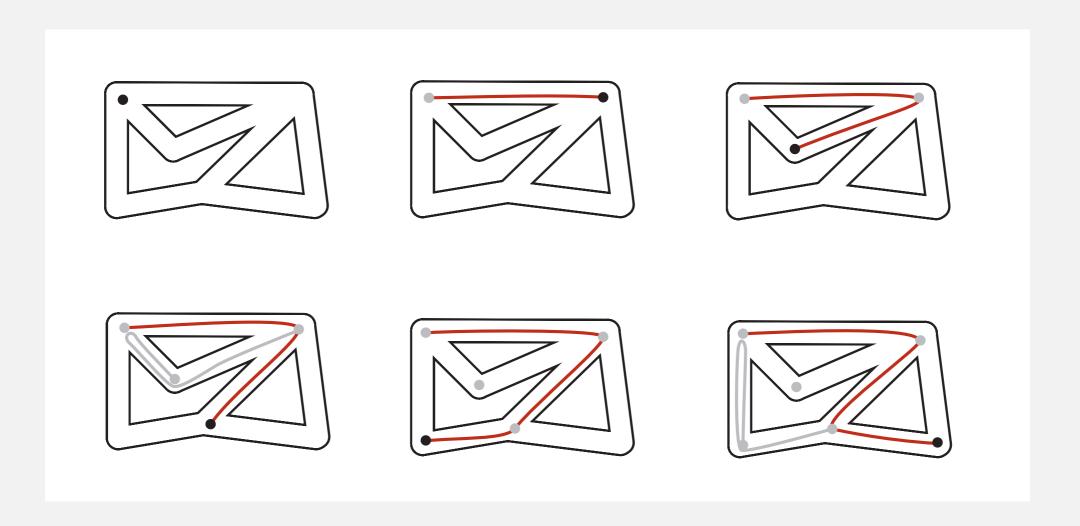


Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.



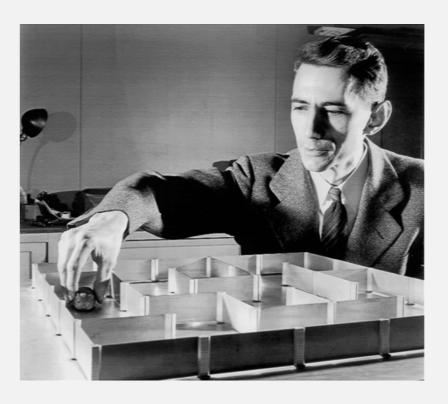
Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

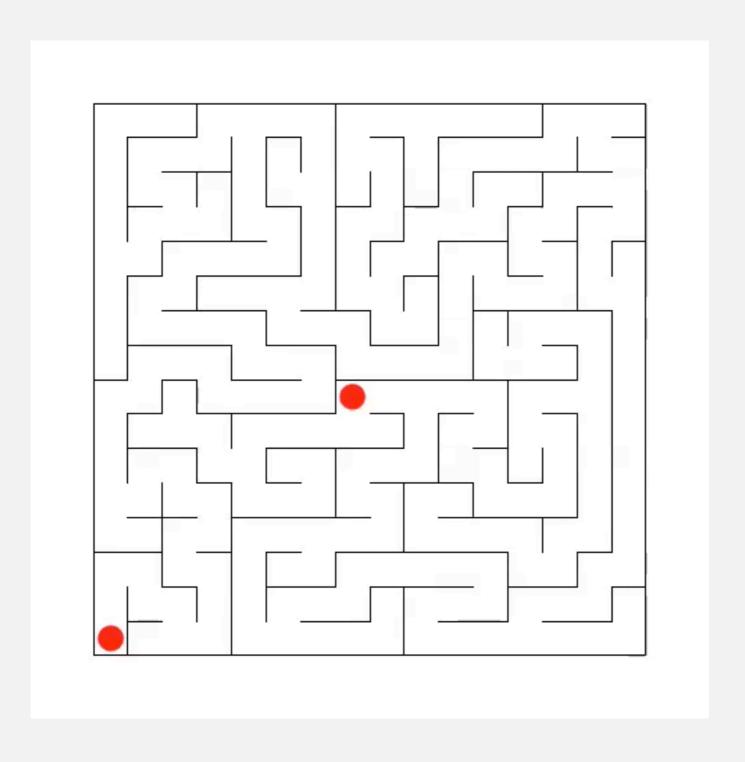
First use? Theseus entered Labyrinth to kill the monstrous Minotaur; Ariadne instructed Theseus to use a ball of string to find his way back out.

The Labyrinth (with Minotaur)

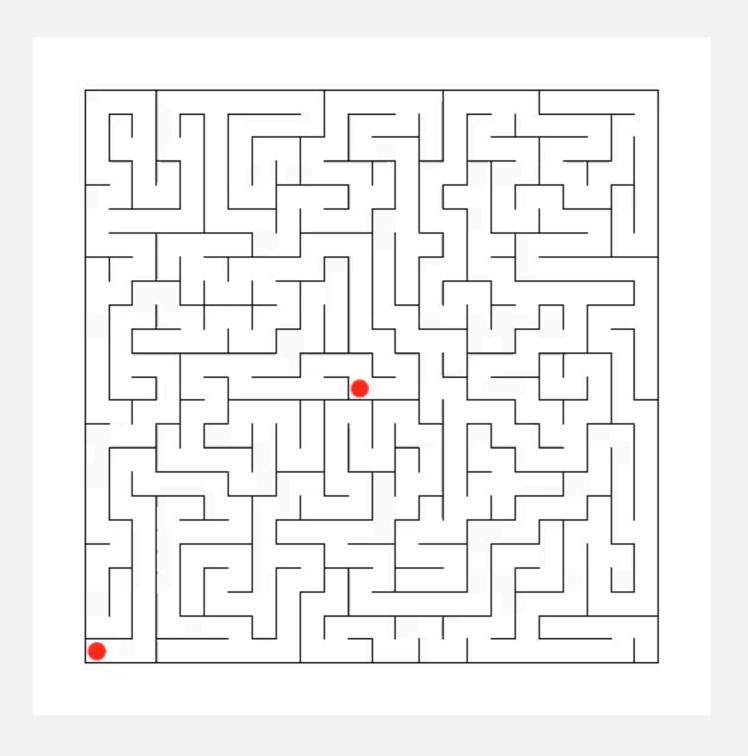


Claude Shannon (with Theseus mouse)

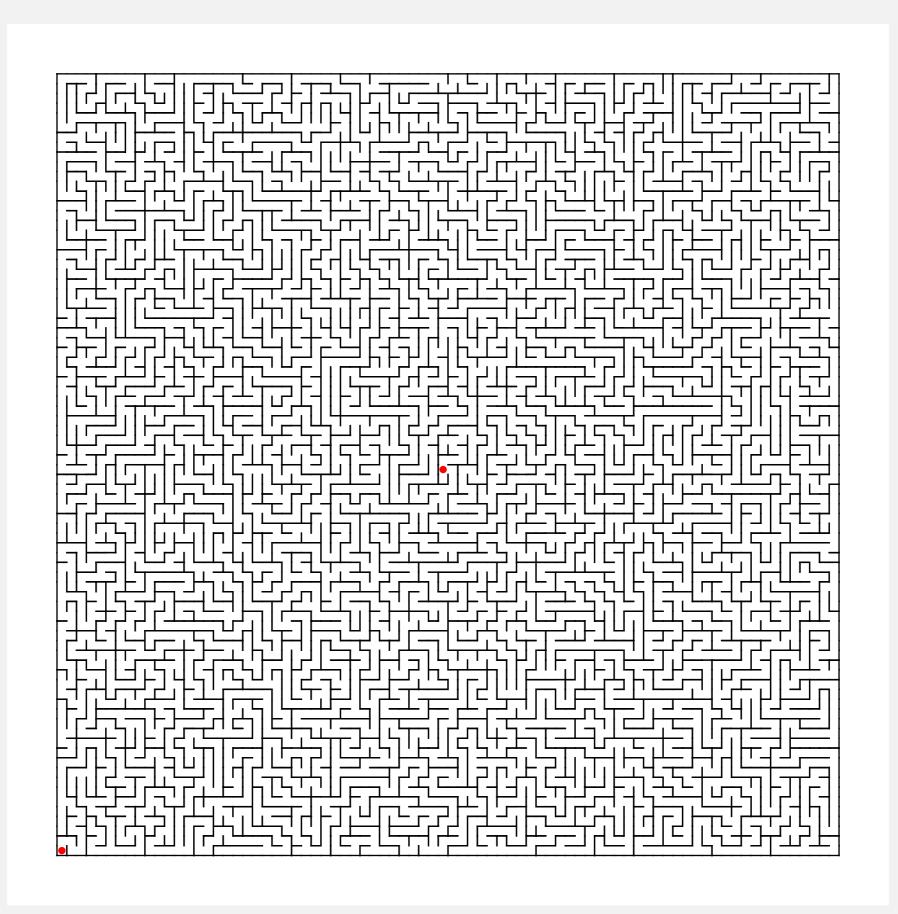
Maze exploration: easy



Maze exploration: medium



Maze exploration: challenge for the bored



Depth-first search

Goal. Systematically traverse a graph.

Idea. Mimic maze exploration. — function-call stack acts as ball of string

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w adjacent to v.

Typical applications.

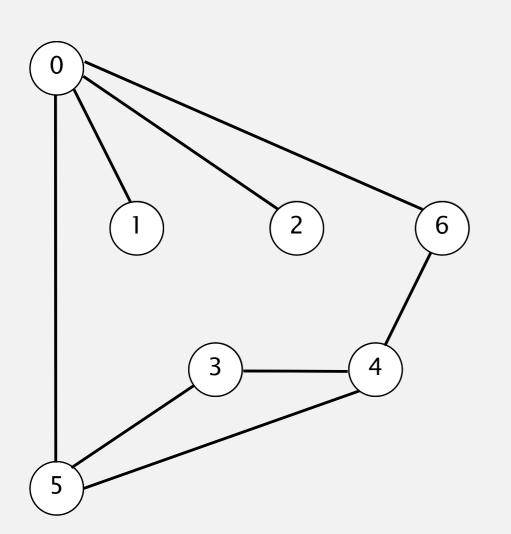
- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

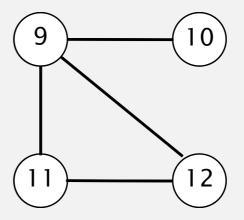
Design challenge. How to implement?

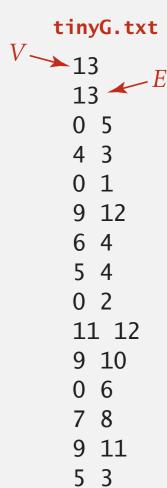
Depth-first search demo

To visit a vertex *v*:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.



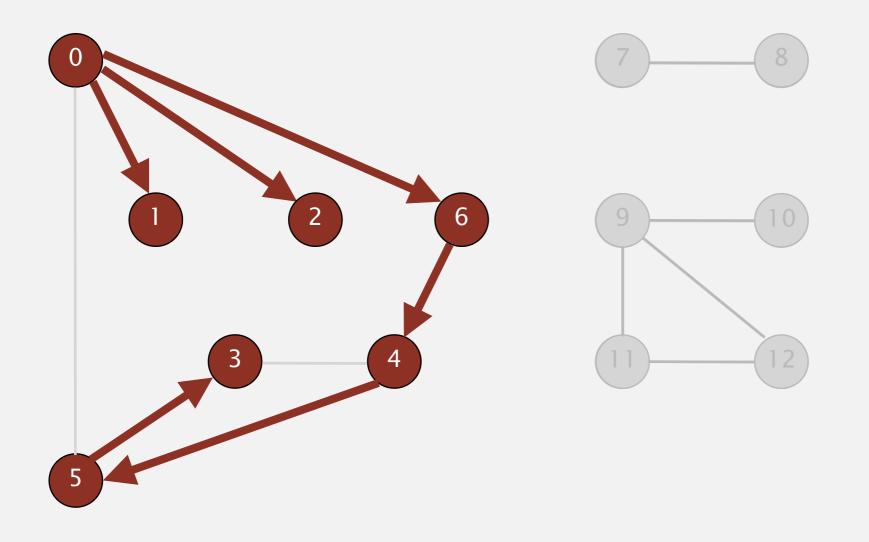




Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.



V	marked[]	edgeTo[]	
0	Т	_	
1	Т	0	
2	Т	0	
3	Т	5	
4	Т	6	
5	Т	4	
6	Т	0	
7	F	_	
8	F	_	
9	F	_	
10	F	_	
11	F	_	
12	F	_	

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

- Create a Graph object.
- Pass the Graph to a graph-processing routine.
- Query the graph-processing routine for information.

```
public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path
```

```
Paths paths = new Paths(G, s);
for (int v = 0; v < G.V(); v++)
  if (paths.hasPathTo(v))
    StdOut.println(v);</pre>
print all vertices
  connected to s
```

Depth-first search: data structures

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

Data structures.

- Boolean array marked[] to mark visited vertices.
- Integer array edgeTo[] to keep track of paths.
 (edgeTo[w] == v) means that edge v-w taken to visit w for first time
- Function-call stack for recursion.

Depth-first search: Java implementation

```
public class DepthFirstPaths
                                                            marked[v] = true
   private boolean[] marked;
                                                            if v connected to s
   private int[] edgeTo;
                                                            edgeTo[v] = previous
   private int s;
                                                            vertex on path from s to v
   public DepthFirstPaths(Graph G, int s)
                                                            initialize data structures
       dfs(G, s);
                                                            find vertices connected to s
   private void dfs(Graph G, int v)
                                                            recursive DFS does the work
       marked[v] = true;
       for (int w : G.adj(v))
          if (!marked[w])
              dfs(G, w);
              edgeTo[w] = v;
```

Depth-first search: properties

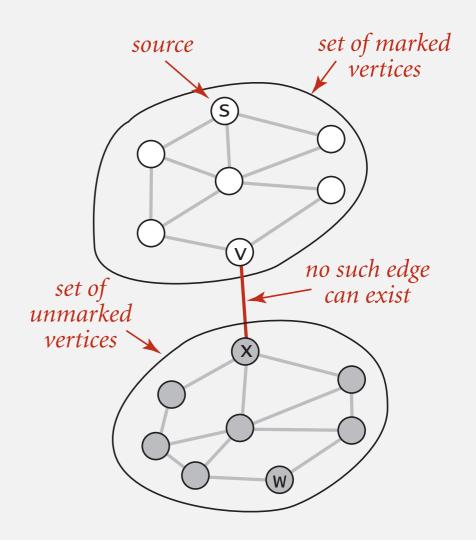
Proposition. DFS marks all vertices connected to s in time proportional to the sum of their degrees (plus time to initialize the marked[] array).

Pf. [correctness]

- If w marked, then w connected to s (why?)
- If w connected to s, then w marked.
 (if w unmarked, then consider last edge on a path from s to w that goes from a marked vertex to an unmarked one).

Pf. [running time]

Each vertex connected to *s* is visited once.



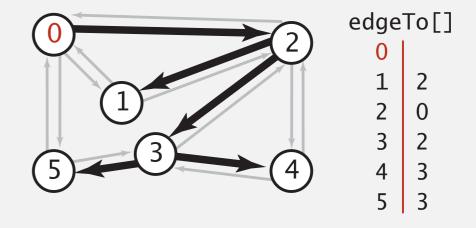
Depth-first search: properties

Proposition. After DFS, can check if vertex v is connected to s in constant time and can find v–s path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

```
public boolean hasPathTo(int v)
{    return marked[v];  }

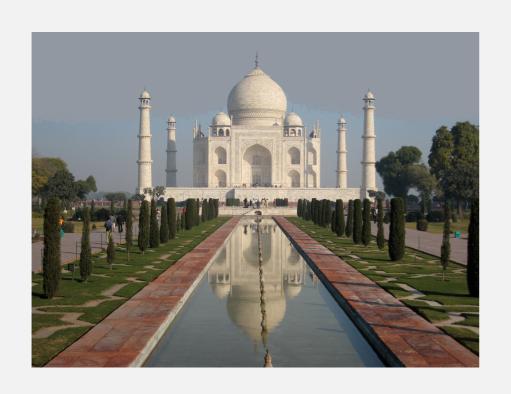
public Iterable<Integer> pathTo(int v)
{
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
    path.push(s);
    return path;
}
```

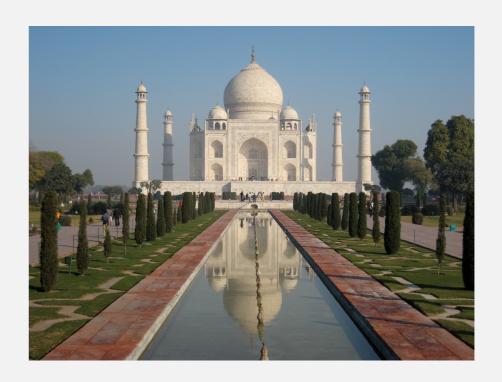


Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

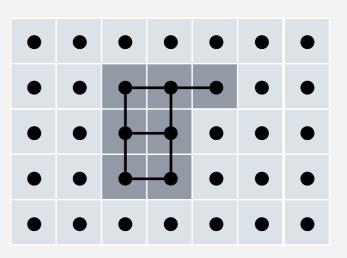
Assumptions. Picture has millions to billions of pixels.





Solution. Build a grid graph (implicitly).

- Vertex: pixel.
- Edge: between two adjacent gray pixels.
- Blob: all pixels connected to given pixel.



Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

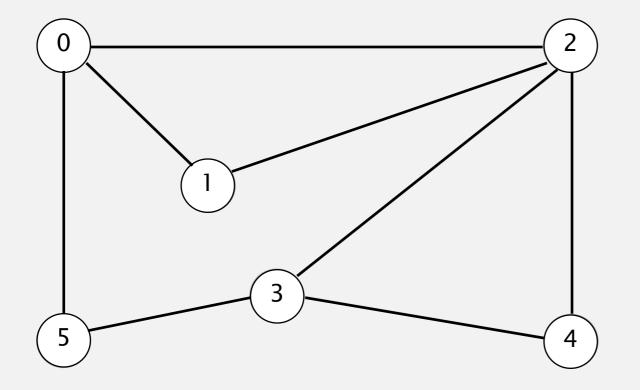
4.1 UNDIRECTED GRAPHS

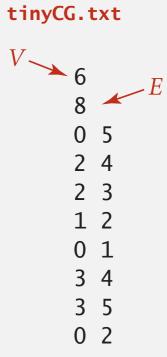
- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

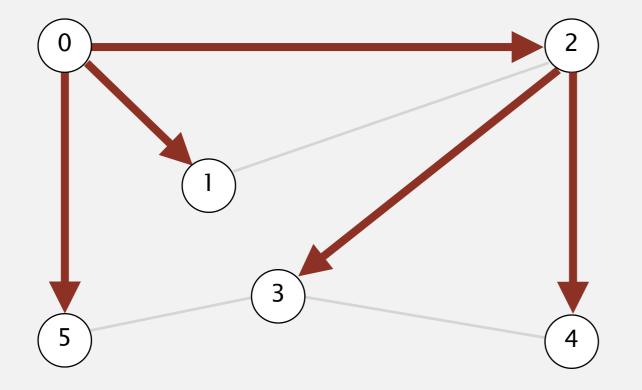




Breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.



V	edgeTo[]	distTo	
0	-	0	
1	0	1	
2	0	1	
3	2	2	
4	2	2	
5	0	1	

Breadth-first search

Repeat until queue is empty:

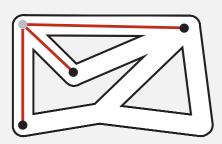
- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

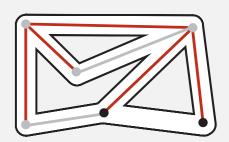
BFS (from source vertex s)

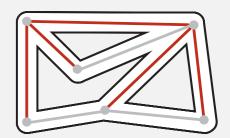
Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.







Breadth-first search: Java implementation

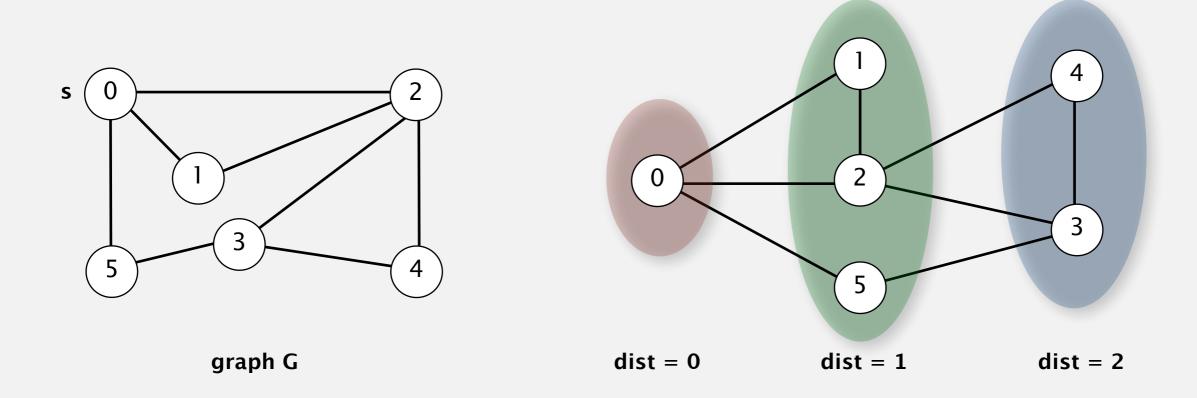
```
public class BreadthFirstPaths
   private boolean[] marked;
   private int[] edgeTo;
   private int[] distTo;
   private void bfs(Graph G, int s) {
      Queue<Integer> q = new Queue<Integer>();
                                                            initialize FIFO queue of
      q.enqueue(s);
                                                            vertices to explore
      marked[s] = true;
      distTo[s] = 0;
      while (!q.isEmpty()) {
         int v = q.dequeue();
         for (int w : G.adj(v)) {
            if (!marked[w]) {
                q.enqueue(w);
                                                            found new vertex w
                marked[w] = true;
                                                            via edge v-w
                edgeTo[w] = v;
                distTo[w] = distTo[v] + 1;
```

Breadth-first search properties

- Q. In which order does BFS examine vertices?
- A. Increasing distance (number of edges) from s.

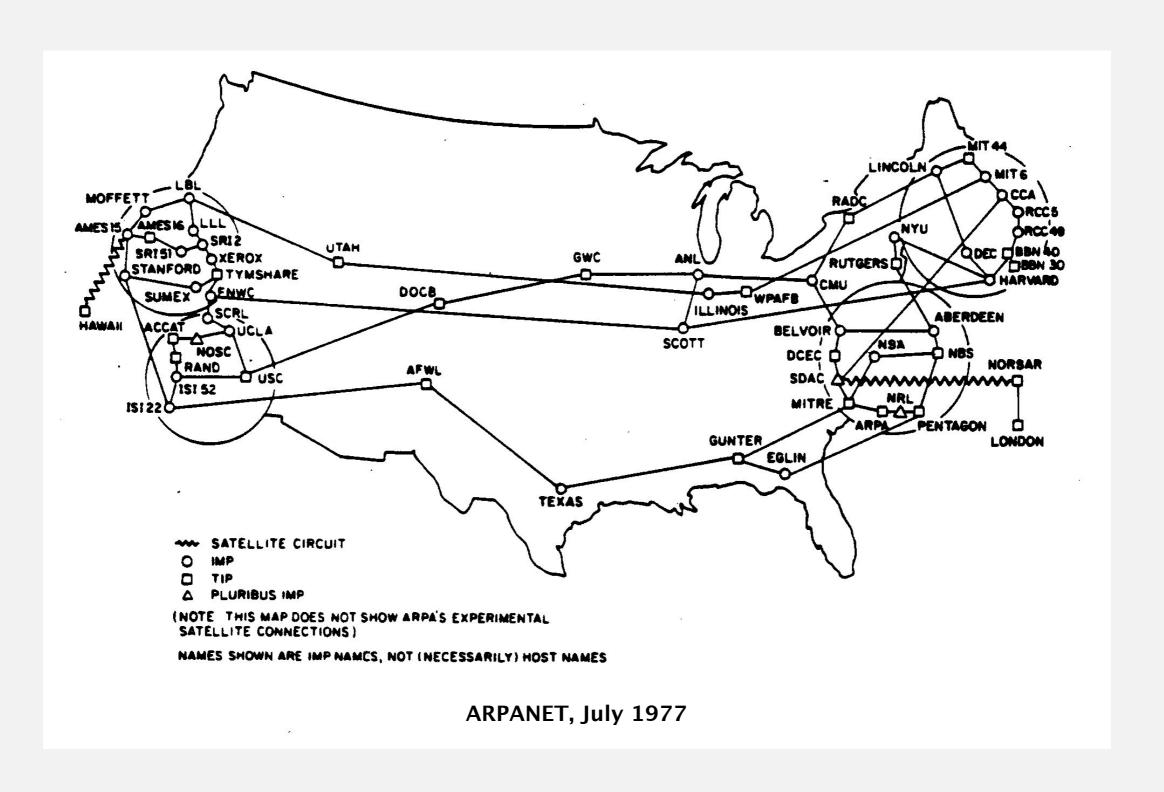
queue always consists of ≥ 0 vertices of distance k from s, followed by ≥ 0 vertices of distance k+1

Proposition. In any connected graph G, BFS computes shortest paths from s to all other vertices in time proportional to E + V.

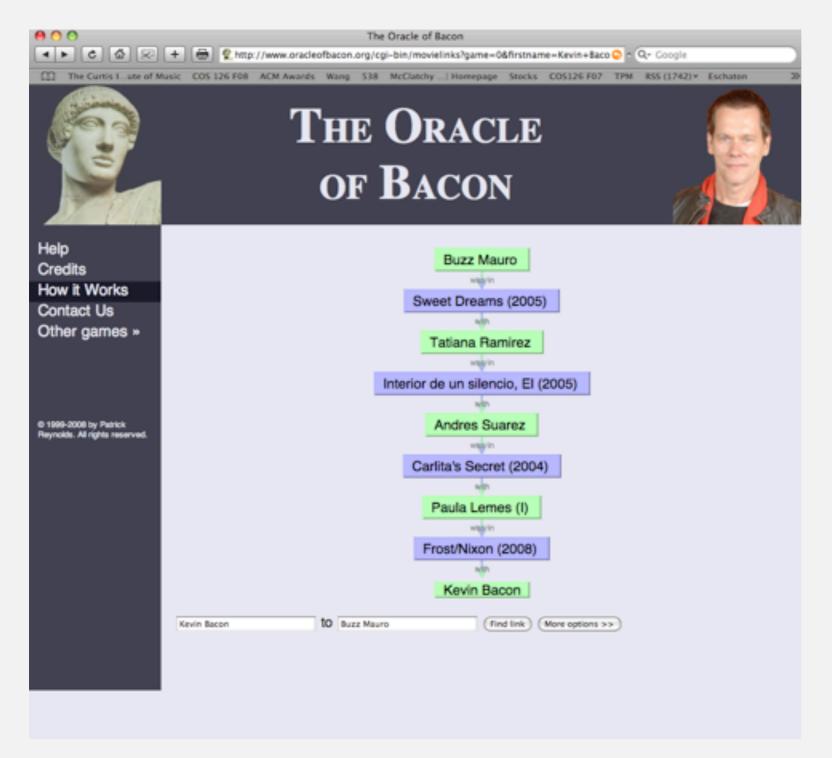


Breadth-first search application: routing

Fewest number of hops in a communication network.

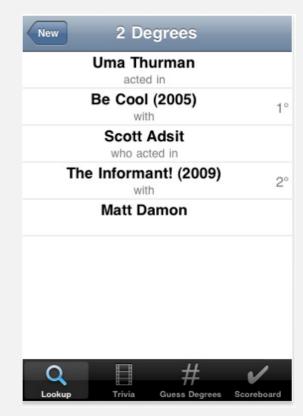


Breadth-first search application: Kevin Bacon numbers



http://oracleofbacon.org

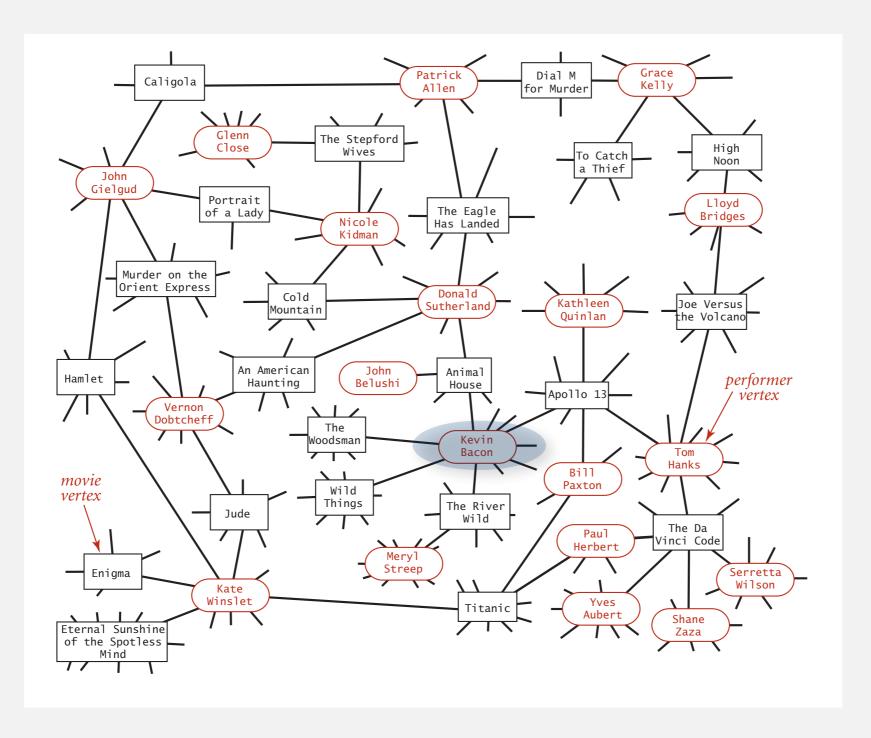
Endless Games board game



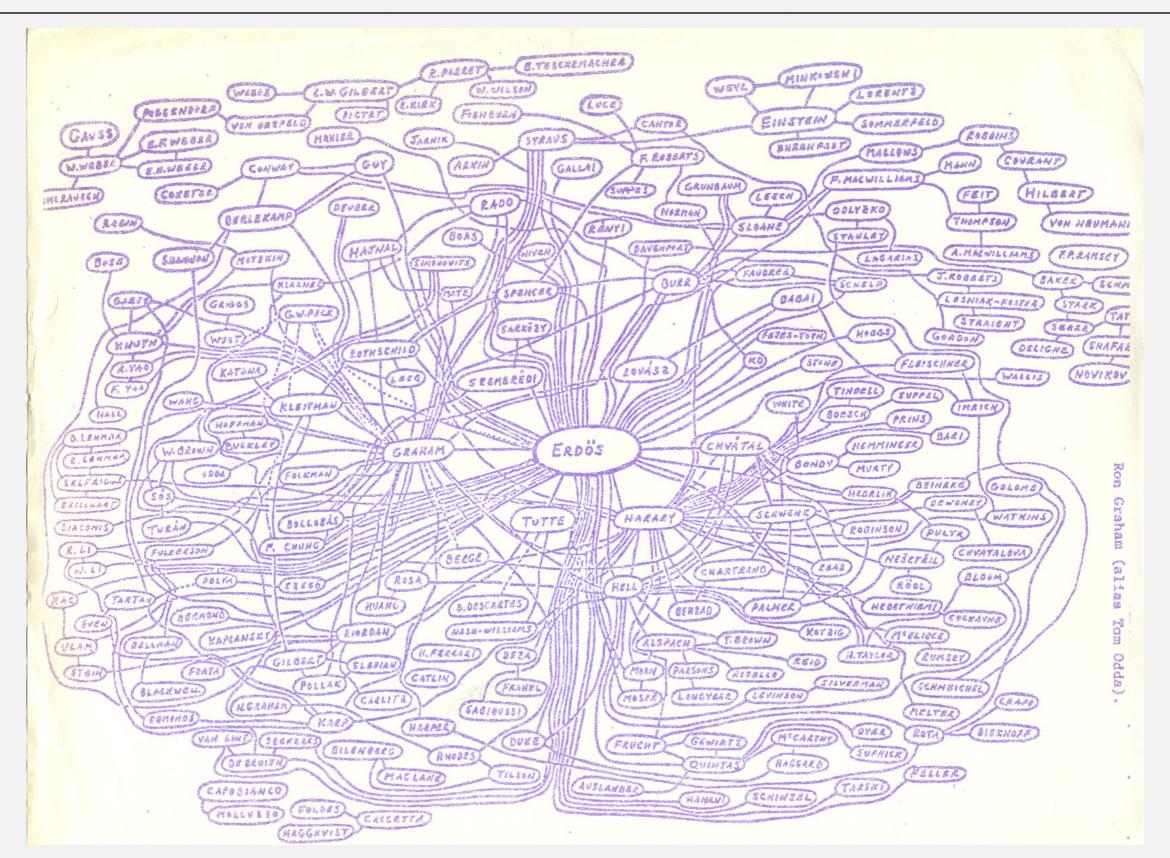
SixDegrees iPhone App

Kevin Bacon graph

- Include one vertex for each performer and one for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from s = Kevin Bacon.



Breadth-first search application: Erdös numbers



hand-drawing of part of the Erdös graph by Ron Graham

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.1 UNDIRECTED GRAPHS

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Connectivity queries

Def. Vertices *v* and *w* are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form *is v connected to w?* in constant time.

public class	CC	
	CC(Graph G)	find connected components in G
boolean	<pre>connected(int v, int w)</pre>	are v and w connected?
int	count()	number of connected components
int	id(int v)	component identifier for v (between 0 and count() - 1)

Union-Find? Not quite.

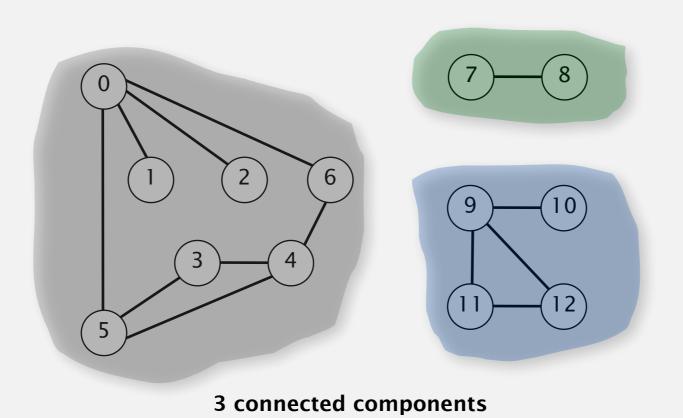
Depth-first search. Yes. [next few slides]

Connected components

The relation "is connected to" is an equivalence relation:

- Reflexive: v is connected to v.
- Symmetric: if *v* is connected to *w*, then *w* is connected to *v*.
- Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.



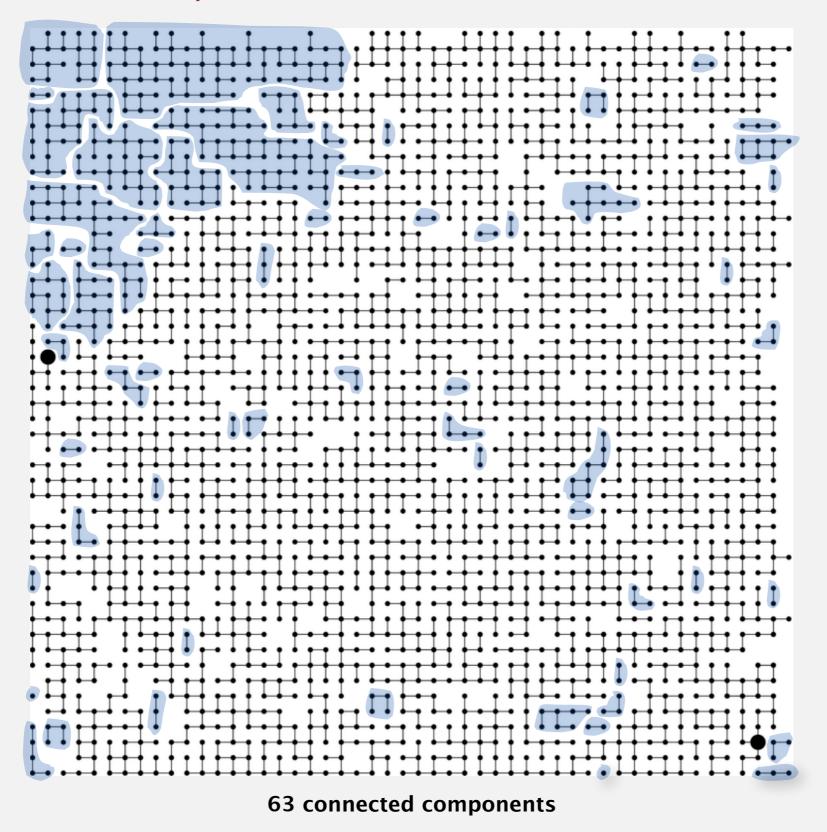
rall
0
0
0
0
0
0
0
1
1
2
2
2
2

14L1

Remark. Given connected components, can answer queries in constant time.

Connected components

Def. A connected component is a maximal set of connected vertices.



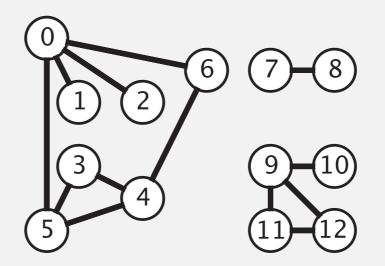
Connected components

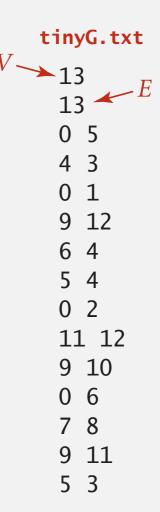
Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.

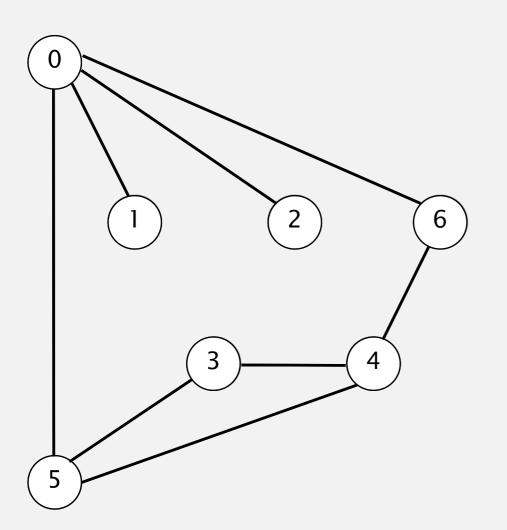


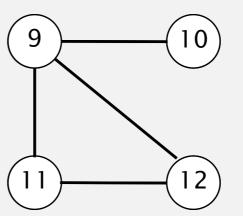


Connected components demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.



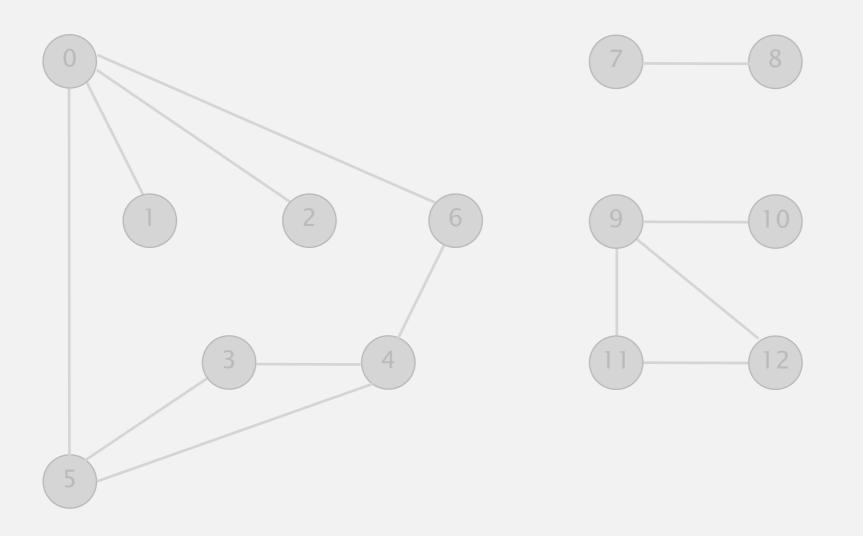


V	marked[]	id[
0	F	_
1	F	_
2	F	_
3	F	_
4	F	_
5	F	_
6	F	_
7	F	_
8	F	_
9	F	_
10	F	_
11	F	_
12	F	_

Connected components demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

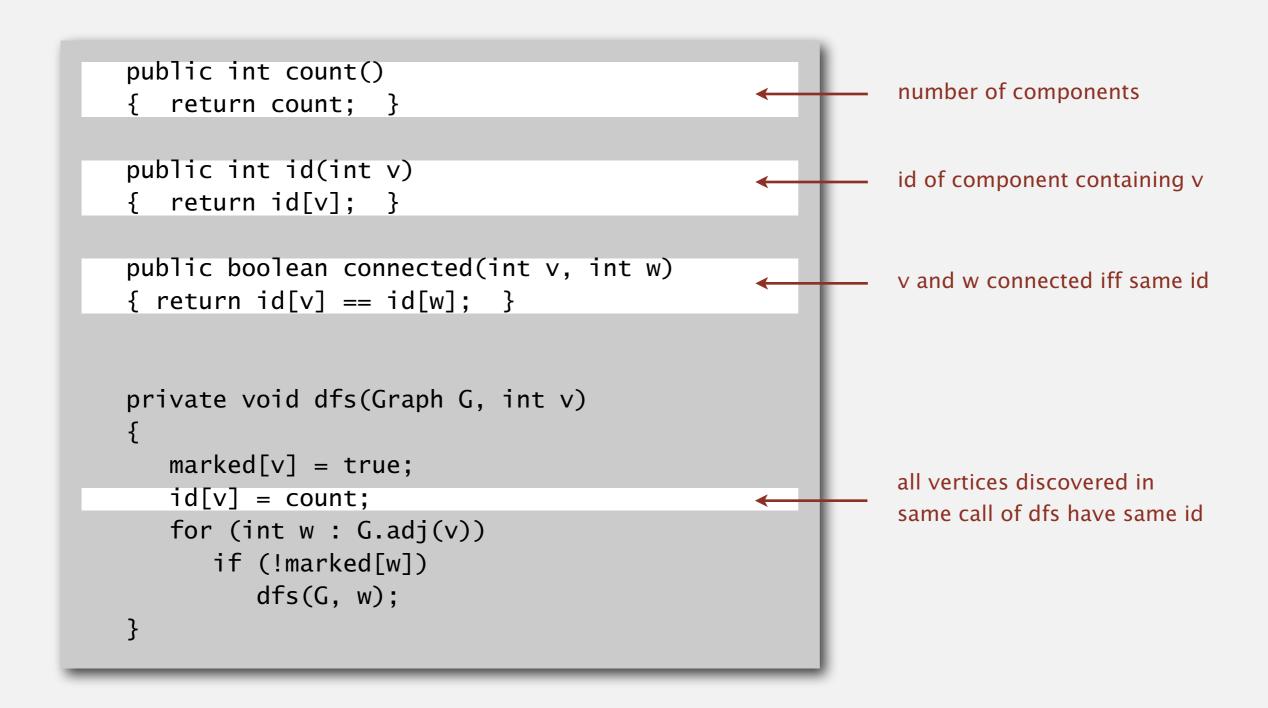


marked[]	ıa[]
Т	0
Т	0
Т	0
Т	0
Т	0
Т	0
Т	0
Т	1
Т	1
Т	2
Т	2
Т	2
Т	2
	T T T T T T T T T T T T

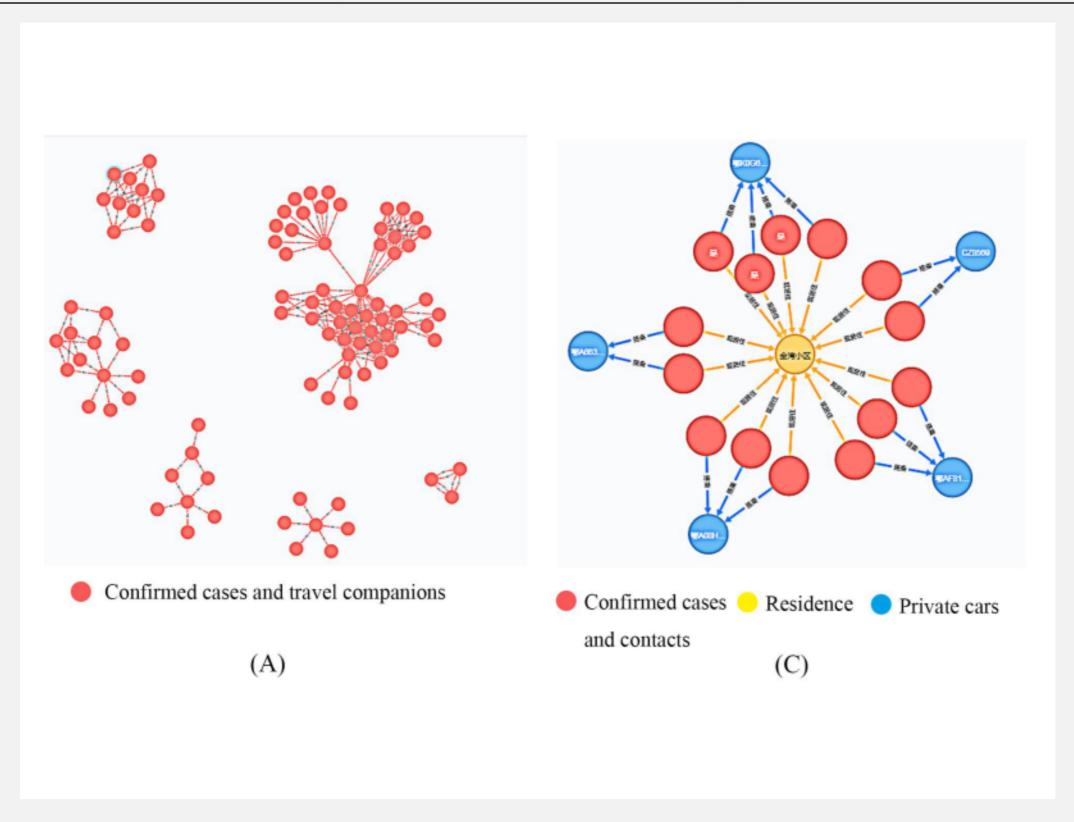
Finding connected components with DFS

```
public class CC
   private boolean[] marked;
                                                       id[v] = id of component containing v
   private int[] id;
   private int count;
                                                       number of components
   public CC(Graph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v])
                                                       run DFS from one vertex in
             dfs(G, v);
                                                       each component
             count++;
   public int count()
                                                       see next slide
   public int id(int v)
   public boolean connected(int v, int w)
   private void dfs(Graph G, int v)
```

Finding connected components with DFS (continued)



Connected components application: study spread of COVID-19



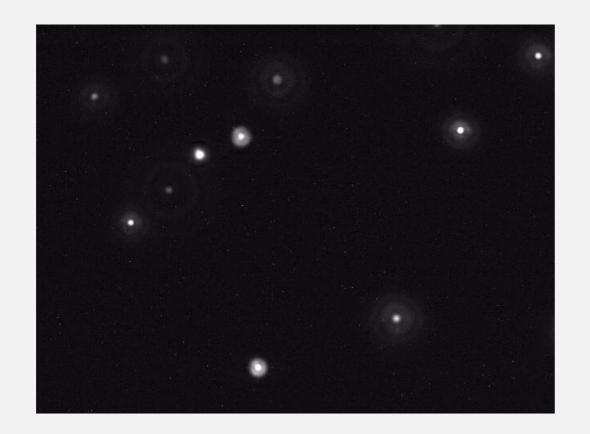
Mao, Zijun, et al. "Digital contact tracing based on a graph database algorithm for emergency management during the COVID-19 epidemic: Case study." JMIR mHealth and uHealth 9.1 (2021): e26836.

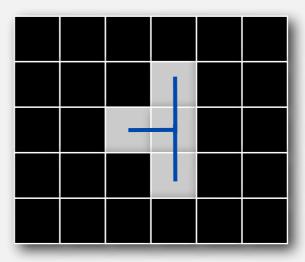
Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value ≥ 70.
- Blob: connected component of 20-30 pixels.

```
black = 0
white = 255
```





Particle tracking. Track moving particles over time.

Reminder: Course Evaluations