
Linked Lists
CS 121: Data Structures

START RECORDING

Outline

• Attendance quiz

• Linked lists

• Linked lists activities

• Homework 5 check-in

Attendance Quiz

Attendance Quiz: Big Oh, Big Ω, and Big Θ

•Scan the QR code, or find today’s attendance
quiz under the “Quizzes” tab on Canvas

•Password: to be announced in class

O() Ω() Θ()
n3
n2n

log(n)
1

Upper Bound Lower Bound Tight BoundIs n2…

Why use Linked Lists?
• Using an array, what is the time complexity of:

• Updating an element, given the index?

• Growing the length of the array?

• Locating an element if the array isn’t sorted?

• Locating an element if the array is sorted?

• Can you think of a program where array length isn’t known ahead of time?

• Linked lists grow in constant-time (i.e., Θ(1))

Θ(1)

Θ(n)

Θ(n)

Θ(log(n))

12. Stacks and Queues

•APIs
•Clients
•Strawman implementation
•Linked lists
•Implementations

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, THEORY, AND MAC HINES

CS.12.D.StacksQueues.Lists

Data structures: sequential vs. linked

8

Sequential data structure

• Put objects next to one another.

• Machine: consecutive memory cells.

• Java: array of objects.

• Fixed size, arbitrary access.

Linked data structure

• Associate with each object a link to another one.

• Machine: link is memory address of next object.

• Java: link is reference to next object.

• Variable size, sequential access.

• Overlooked by novice programmers.

• Flexible, widely used method for organizing data.

i th element

next element

addr value

C0 "Alice"

C1 "Bob"

C2 "Carol"

C3

C4

C5

C6

C7

C8

C9

CA

CB

Array at C0

addr value

C0 "Carol"

C1 null

C2

C3

C4 "Alice"

C5 CA

C6

C7

C8

C9

CA "Bob"

CB C0

Linked list at C4

Simplest singly-linked data structure: linked list

9

Linked list

• A recursive data structure.

• Def. A linked list is null or a reference to a node.

• Def. A node is a data type that contains a reference to a node.

• Unwind recursion: A linked list is a sequence of nodes.

Representation

• Use a private nested class Node to implement the node abstraction.

• For simplicity, start with nodes having two values: a String and a Node.

private class Node
{
 private String item;
 private Node next;
}

"Alice" "Bob" "Carol"first

null
item next

A linked list

Building a linked list

Node third = new Node();
third.item = "Carol";
third.next = null;

Node second = new Node();
second.item = "Bob";
second.next = third;

Node first = new Node();
first.item = "Alice";
first.next = second;

10

addr value

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB"Bob"

second

"Alice"

first

third C0

first C4

second CA

"Carol"

third

null

"Carol"

null

"Bob"

C0

"Alice"

CA

List processing code

11

Standard operations for processing data structured as a singly-linked list

• Add a node at the beginning.

• Remove and return the node at the beginning.

• Add a node at the end (requires a reference to the last node).

• Traverse the list (visit every node, in sequence).

An operation that calls for a doubly-linked list (slightly beyond our scope)

• Remove and return the node at the end.

List processing code: Remove and return the first item

12

item = first.item;

return item;

first = first.next;

Goal. Remove and return the first
 item in a linked list first.

"Alice" "Bob" "Carol"first

"Alice" "Bob" "Carol"first"Alice"
item

first "Bob" "Carol""Alice"
item

first "Alice" "Bob" "Carol""Alice"
item

available for
garbage collection

List processing code: Add a new node at the beginning

13

Node second = first;

first.item = item;
first.next = second;

first = new Node();

Goal. Add item to a linked list first.

"Alice" "Bob" "Carol"first

second

first "Alice" "Bob" "Carol"

second

"Dave"

first "Alice" "Bob" "Carol"

second

"Alice" "Bob" "Carol"first

"Dave"
item

List processing code: Add a new node at the end

14

last.next = new Node();

last.item = item;

last = last.next;

Goal. Add item to the end of a linked list.
 Use and maintain a reference last
 to the last node. "Alice" "Bob" "Carol"first

"Dave"
item

last

"Alice" "Bob" "Carol"first

"Dave"
item

last

"Alice" "Bob" "Carol"first

"Dave"
item

last

"Alice" "Bob" "Carol"first

last

"Dave"

List processing code: Traverse a list

15

Goal. Visit every node on a linked list first.

"Alice" "Bob" "Carol"first

Node x = first;
while (x != null)
{
 StdOut.println(x.item);
 x = x.next;
}

x

Alice
Bob
Carol

StdOut

Pop quiz 1 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

16

...
Node list = null;
while (!StdIn.isEmpty())
{
 Node old = list;
 list = new Node();
 list.item = StdIn.readString();
 list.next = old;
}
for (Node t = list; t != null; t = t.next)
 StdOut.println(t.item);
...

Pop quiz 1 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

17

...
Node list = null;
while (!StdIn.isEmpty())
{
 Node old = list;
 list = new Node();
 list.item = StdIn.readString();
 list.next = old;
}
for (Node t = list; t != null; t = t.next)
 StdOut.println(t.item);
...

A: Prints the strings from StdIn on StdOut, in reverse order

Note: Better to use a stack (next lecture!)

or be to

not or be tolist

list

old

list or be to

old

not

Pop quiz 2 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

18

...
Node list = new Node();
list.item = StdIn.readString();
Node last = list;
while (!StdIn.isEmpty())
{
 last.next = new Node();
 last = last.next;
 last.item = StdIn.readString();
}
...

Pop quiz 2 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

19

...
Node list = new Node();
list.item = StdIn.readString();
Node last = list;
while (!StdIn.isEmpty())
{
 last.next = new Node();
 last = last.next;
 last.item = StdIn.readString();
}
...

A: Puts the strings from StdIn on a linked list, in the order they are read (assuming at least one string).

to be orlist

last

to be orlist

last

to be orlist

last

not

Note: Better to use a queue, in most applications (next lecture!)

In this course, we restrict use of linked lists to data-type implementations

public class IntLinkedList {

 private class Node {
 int val;
 Node next;

 public Node(int v) {
 val = v;
 next = null;
 }
 }

 private Node head; // the first node and access point of the linked list
private int length; // number of nodes in the list

 // constructor initializes an empty linked list
 public IntLinkedList() {
 head = null;
 }

 // TODO
// public int length() { }
// public int get(int i) { }

 // public void addFirst(int val) { }
 // public void addLast(int val) { }
}

Linked List Activities

• Implement length()

• Implement addFirst()

• Implement get()

• Implement addLast()

Invariants
• Properties that need to be maintained (e.g., of instance variables)

• For each method:

• Pre-conditions: what are assumed to be true at the beginning of the
method

• e.g. instance variables, parameters, etc.

• Post-conditions: what should be true at the end of the method

• e.g. instance variables, output, parameters, etc.

IntLinkedList Invariants

• Instance variables:

• head: should always refer to the first node of the linked list, or null if the
list is empty

• length: should always be the number of nodes in the list

Improve addLast()

• addLast() will be slow, if we must traverse the entire LinkedList each time

• Instead, we can simply keep track of the tail, in addition to the head

• Considering the invariants of our class will help us write bug-free code

IntLinkedList Invariants

• Instance variables:

• head: should always refer to the first node of the linked list, or null if the
list is empty

• tail: should always refer to the last node of the linked list, or null if the
list is empty

• length: should always be the number of nodes in the list

Singly-linked data structures

26

Even with just one link () a wide variety of data structures are possible.

Multiply linked structures: many more possibilities!
From the point of view of a particular object,
all of these structures look the same.

Circular list (TSP)

Linked list (this lecture)

General case

Tree

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

12. Stacks and Queues

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, THEORY, AND MAC HINES

Section 4.3

http://introcs.cs.princeton.edu

Homework Check-in

