
Stacks and Queues
CS 121: Data Structures

START RECORDING

Outline

• Attendance quiz

• Overview of stacks and queues

• Implementation of stacks and queues

Attendance Quiz

Attendance Quiz:
Linked Lists

• Scan the QR code, or find
today’s attendance quiz under
the “Quizzes” tab on Canvas

• Password: to be announced

public class IntLinkedList {

 private class Node {
 int val;
 Node next;

 public Node(int v) {
 val = v;
 next = null;
 }
 }

 private Node head; // the first node
 private Node tail; // the last node

private int length; // number of nodes in the list

 // constructor initializes an empty linked list
 public IntLinkedList() {
 head = null;
 tail = null;
 length = 0;
 }

 // TODO
 // public void addFirst(int val) { }
 // public void addLast(int val) { }
}

Attendance Quiz:
Linked Lists

• Write your name

• Write code for addFirst() and
addLast()

public class IntLinkedList {

 private class Node {
 int val;
 Node next;

 public Node(int v) {
 val = v;
 next = null;
 }
 }

 private Node head; // the first node
 private Node tail; // the last node

private int length; // number of nodes in the list

 // constructor initializes an empty linked list
 public IntLinkedList() {
 head = null;
 tail = null;
 length = 0;
 }

 // TODO
 // public void addFirst(int val) { }
 // public void addLast(int val) { }
}

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

12. Stacks and Queues

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, THEORY, AND MAC HINES

Section 4.3

http://introcs.cs.princeton.edu

12. Stacks and Queues

•APIs
•Clients
•Strawman implementation
•Linked lists
•Implementations

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, THEORY, AND MAC HINES

CS.12.A.StacksQueues.APIs

Choosing appropriate data structures

9

Data structures

• Represent data.

• Represent relationships among data.

• Some are built in to Java: 1D arrays, 2D arrays, . . .

• Most are not: linked list, circular list, tree, . . .

When implementing a Java class: Which data structures structures to use?

• Resource 1: How much memory is needed?

• Resource 2: How much time do data-type methods use?

Data structure comparison: arrays vs linked lists

• Arrays allow constant-time access of any element, but
growth requires linear time

• Linked lists allow constant-time access of the first and
last elements, and constant-time growth

Stack and Queue APIs

10

Stack operations

• Add an item to the collection.

• Remove and return the item
most recently added (LIFO).

• Test if the collection is empty.

• Return the size of the collection.

Two fundamental collection ADTs differ in just a detail of the specification of their operations.

A collection is an ADT whose values are a multiset of items, all of the same type.

Queue operations

• Add an item to the collection.

• Remove and return the item
least recently added (FIFO).

• Test if the collection is empty.

• Return the size of the collection.

Stacks and queues both arise naturally in countless applications.

A key characteristic. No limit on the size of the collection.

Add to the
beginning

Add to
the end

Take from the
beginning

Last
In

First
Out

Take from the
beginning

First
In

First
Out

Example of stack operations

11

Push. Add an item to the collection.
 Pop. Remove and return the item most recently added.

push to be or not to - be - - that - - - is

pop

stack
contents

after
operation

push to
the top

pop from
the top

Last
In

First
Out

to

be

to

or

be

to

not

or

be

to

to

not

or

be

to

push to
the top

be

not

or

be

to

that

or

be

to

is

to

pop from
the top

to

not

or

be

to

be

not

or

be

to

not

or

be

to

that

or

be

to

or

be

to

be

to

Stack

12

https://www.webstaurantstore.com/

Example of queue operations

13

Enqueue. Add an item to the collection.
Dequeue. Remove and return the item least recently added.

to to

be

to

be

or

to

be

or

not

to

be

or

not

to

be

or

not

to

be

not

to

be

that

that

is

enqueue to be or not to - be - - that - - - is

dequeue

queue
contents

after
operation

enqueue at
the end

dequeue from
the beginning

First
In

First
Out

enqueue at
the end

dequeue from the beginning

to

be

or

not

to

be

or

not

to

be

or

not

to

be

not

to

be

that

to

be

that

be

that

Queue

14

https://commons.wikimedia.org/wiki/
File:People_waiting_a_train_of_Line_13_to_come_02.JPG

Java approach: Parameterized data types (generics)

• Use placeholder type name in definition.

• Substitute concrete type for placeholder in clients.

Parameterized data types

15

public class Stack<Item>

 Stack<Item>() create a stack of items, all of type Item

 void push(Item item) add item to stack

 Item pop() remove and return the item most recently pushed

boolean isEmpty() is the stack empty ?

 int size() # of objects on the stack

Stack API

public class Queue<Item>

 Queue<Item>() create a queue of items, all of type Item

 void enqueue(Item item) add item to queue

 Item dequeue() remove and return the item least recently enqueued

boolean isEmpty() is the queue empty ?

 int size() # of objects on the queue

Queue API

Goal. Simple, safe, and clear client code for collections of any type of data.

stay tuned for examples

Performance specifications

16

• All operations are constant-time.

• Memory use is linear in the size of the
collection, when it is nonempty.

• No limits within the code on the collection size.

Java. Any implementation of the API implements the stack/queue abstractions.

This course: Implementations that do not meet performance specs do not implement the abstractions.

Goal. Simple, safe, clear, and efficient client code.

Challenge. Provide guarantees on performance.

Performance
specifications

Typically required for
client code to be scalable

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.12.A.StacksQueues.APIs

12. Stacks and Queues

•APIs
•Clients
•Strawman implementation
•Linked lists
•Implementations

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, THEORY, AND MAC HINES

CS.12.B.StacksQueues.Clients

Stack and queue applications

19

Queues

• First-come-first-served resource allocation.

• Asynchronous data transfer (StdIn, StdOut).

• Dispensing requests on a shared resource.

• Simulations of the real world.

Stacks

• Last-come-first-served resource allocation.

• Function calls in programming languages.

• Basic mechanism in interpreters, compilers.

• Fundamental abstraction in computing.

Queue client example: Read all strings from StdIn into an array

public class QEx
{
 public static String[] readAllStrings()
 { /* See next slide. */ }

 public static void main(String[] args)
 {
 String[] words = readAllStrings();
 for (int i = 0; i < words.length; i++)
 StdOut.println(words[i]);
 }
}

20

Challenge

• Can’t store strings in array
before creating the array.

• Can’t create the array without
knowing how many strings are
in the input stream.

• Can’t know how many strings
are in the input stream without
reading them all.

Solution: Use a Queue<String>. % more moby.txt
moby dick
herman melville
call me ishmael some years ago never
mind how long precisely having
little or no money
...

% java QEx < moby.txt
moby
dick
herman
melville
call
me
ishmael
some
years
...

Note: StdIn has this
functionality

Queue client example: Read all strings from StdIn into an array

public class QEx
{
 public static String[] readAllStrings()
 {
 Queue<String> q = new Queue<String>();
 while (!StdIn.isEmpty())
 q.enqueue(StdIn.readString());
 int N = q.size();
 String[] words = new String[N];
 for (int i = 0; i < N; i++)
 words[i] = q.dequeue();
 return words;
 }

 public static void main(String[] args)
 {
 String[] words = readAllStrings();
 for (int i = 0; i < words.length; i++)
 StdOut.println(words[i]);
 }
}

21

Solution: Use a Queue<String>.

• Store strings in the queue.

• Get the size when all have been
read from StdIn.

• Create an array of that size.

• Copy the strings into the array.

Stack example: "Back" button in a browser

22

http://introcs.cs.princeton.edu/java/home/

http://introcs.cs.princeton.edu/java/40algorithms/

http://introcs.cs.princeton.edu/java/43stack/

Typical scenario

• Visit a page.

• Click a link to another page.

• Click a link to another page.

• Click a link to another page.

• Click "back" button.

• Click "back" button.

• Click "back" button.

http://introcs.cs.princeton.edu/java/home/
http://introcs.cs.princeton.edu/java/40algorithms/
http://introcs.cs.princeton.edu/java/43stack/

Autoboxing

23

Wrapper types

• Each primitive type has a wrapper reference type.

• Wrapper type has larger set of operations than primitive type.
Example: Integer.parseInt().

• Instances of wrapper types are objects.

• Wrapper type can be used in a parameterized ADT.

Autoboxing. Automatic cast from primitive type to wrapper type.

Challenge. Use a primitive type in a parameterized ADT.

primitive type wrapper type

int Integer

char Character

double Double

boolean Boolean

Auto-unboxing. Automatic cast from wrapper type to primitive type.

Simple client code
(no casts)

Stack<Integer> stack = new Stack<Integer>();

stack.push(17); // Autobox (int -> Integer)

int a = stack.pop(); // Auto-unbox (Integer -> int)

Stack client example: Postfix expression evaluation

24

Example. 1 2 3 + 4 5 * * +

Infix. Standard way of writing arithmetic expressions, using parentheses for precedence.

Example. (1 + ((2 + 3) * (4 * 5))) = (1 + (5 * 20)) = 101

Postfix. Write operator after operands (instead of in between them).

There is only one
way to parenthesize
a postfix expression.

Next. With a stack, postfix expressions are easy to evaluate.

1 (2 + 3) 4 5 * * +

1 2 3 + 4 5 * * +

Remarkable fact. No parentheses are needed!

find first operator, convert
to infix, enclose in ()

1 ((2 + 3) * (4 * 5)) + iterate, treating subexpressions
in parentheses as atomic

(1 + ((2 + 3) * (4 * 5)))

also called "reverse Polish" notation (RPN) Jan Łukasiewicz
1878−1956

HP-35 (1972)
First handheld calculator.

"Enter" means "push".
No parentheses.

Made slide rules obsolete (!)

= =

+

Postfix arithmetic expression evaluation

25

Algorithm

• While input stream is nonempty, read a token.

• Value: Push onto the stack.

• Operator: Pop operand(s), apply operator, push the result.

1 2 3 + 4 5 * *

5= 20= 100 101

1 2 3 + 4 5 * * +

1 1011

2

1

2

3

1

5

1

5

4

1

5

4

5

1

5

20

1

100

Stack client example: Postfix expression evaluation

public class Postfix
{
 public static void main(String[] args)
 {
 Stack<Double> stack = new Stack<Double>();
 while (!StdIn.isEmpty())
 {
 String token = StdIn.readString();
 if (token.equals("*"))
 stack.push(stack.pop() * stack.pop());
 else if (token.equals("+"))
 stack.push(stack.pop() + stack.pop());
 else if (token.equals("-"))
 stack.push(-stack.pop() + stack.pop());
 else if (token.equals("/"))
 stack.push((1.0/stack.pop()) * stack.pop());
 else if (token.equals("sqrt"))
 stack.push(Math.sqrt(stack.pop()));
 else
 stack.push(Double.parseDouble(token));
 }
 StdOut.println(stack.pop());
 }
}

26

% java Postfix
1 2 3 + 4 5 * * +
101.0

% java Postfix
1 5 sqrt + 2 /
1.618033988749895

� +
�
�

�

Perspective

• Easy to add operators of all sorts.

• Can do infix with two stacks (see text).

• Could output machine language code.

• Indicative of how Java compiler works.

Stack client example: Infix expression evaluation

27

Infix. Standard way of writing arithmetic expressions, using parentheses for precedence.

Example. (1 + ((2 + 3) * (4 * 5))) = (1 + (5 * 20)) = 101

Dijkstra. With two stacks, infix expressions are easy to evaluate.

Edsger Dijkstra
1878−1956

Dijkstra's 2-stack algorithm

• While input stream is nonempty, read a token.

• Value: Push onto the value stack.

• Operator: Push onto the operator stack.

• Left paren: Ignore.

• Right paren: Pop two values, pop operator, apply operator to values, push the result.

100 100 moveto
100 300 lineto
300 300 lineto
300 100 lineto
stroke

Real-world stack application: PostScript

28

PostScript (Warnock-Geschke, 1980s): A turtle with a stack.

• Postfix program code (push literals; functions pop arguments).

• Add commands to drive virtual graphics machine.

• Add loops, conditionals, functions, types, fonts, strings....

A simple virtual machine, but not a toy

• Easy to specify published page.

• Easy to implement on various specific printers.

• Revolutionized world of publishing.

100

300

Another stack machine: The JVM (Java Virtual Machine)!

push(100)

PostScript code

define a path

draw the path

call "moveto" (takes args from stack)

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.12.A.StacksQueues.APIsCS.12.B.StacksQueues.Clients

Image sources

 http://pixabay.com/en/book-stack-learn-knowledge-library-168824/

 http://upload.wikimedia.org/wikipedia/commons/2/20/Cars_in_queue_to_enter_Gibraltar_from_Spain.jpg

12. Stacks and Queues

•APIs
•Clients
•Strawman implementation
•Linked lists
•Implementations

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, THEORY, AND MAC HINES

CS.12.C.StacksQueues.Strawman

Warmup: simplify the ADT

• Implement only for items of type String.

• Have client provide a stack capacity in the constructor.

Strawman ADT for pushdown stacks

31

public class StrawStack

 StrawStack(int max) create a stack of capacity max

 void push(String item) add item to stack

 String pop() return the string most recently pushed

boolean isEmpty() is the stack empty ?

 int size() number of strings on the stack

Strawman API

Rationale. Allows us to represent the collection with an array of strings.

values

Strawman implementation: Instance variables and constructor

32

Data structure choice. Use an array to hold the collection.
instance variables
constructor

methods

test clientpublic class StrawStack
{
 private String[] a;
 private int N = 0;

 public StrawStack(int max)
 { a = new String[max]; }
...
}

N

items on stack

a[0]

a[1]

a[2]

...

"upside down"
representation of

Strawman stack implementation: Test client

public static void main(String[] args)
{
 int max = Integer.parseInt(args[0]);
 StrawStack stack = new StrawStack(max);
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-"))
 StdOut.print(stack.pop());
 else
 stack.push(item);
 }
 StdOut.println();
}

33

What we expect, once the implementation is done.

instance variables

constructors

methods

test client

% more tobe.txt
to be or not to - be - - that - - - is

% java StrawStack 20 < tobe.txt
to be not that or be

Strawman implementation: Methods

public class StrawStack
{
...
 public boolean isEmpty()
 { return (N == 0); }

 public void push(String item)
 { a[N++] = item; }

 public String pop()
 { return a[--N]; }

 public int size()
 { return N; }
...
}

34

Methods define data-type operations (implement APIs).
instance variables

constructors

methods

test client

N

N

after
push()

N

after
pop()

all constant-time
one-liners!

Strawman pushdown stack implementation

public class StrawStack
{
 private String[] a;
 private int N = 0;

 public StrawStack(int max)
 { a = new String[max]; }

 public boolean isEmpty()
 { return (N == 0); }

 public void push(String item)
 { a[N++] = item; }

 public String pop()
 { return a[--N]; }

 public int size()
 { return N; }

 public static void main(String[] args)
 {
 int max = Integer.parseInt(args[0]);
 StrawStack stack = new StrawStack(max);
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-"))
 StdOut.print(stack.pop() + " ");
 else
 stack.push(item);
 }
 StdOut.println();
 }
}

35

instance variables

constructor

methods

test client

% more tobe.txt
to be or not to - be - - that - - - is

% java StrawStack 20 < tobe.txt
to be not that or be

Trace of strawman stack implementation (array representation)

36

push to be or not to - be - - that - - - is

pop to be not that or be

stack
contents

after
operation

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]
a[7]
a[8]
a[9]

a[10]
a[11]
a[12]
a[13]
a[14]
a[15]
a[16]
a[17]
a[18]
a[19]

to
be

to

N

to
be
or

to
be
or
not

to
be
or
not
to

to
be
or
not
to

to
be
or
not
be

to
be
or
not
be

to
be
or
not
be

to
be
or

that
be

to
be
or

that
be

to
be
or

that
be

to
be
or

that
be

to
is
or

that
be

Significant wasted space when stack size
is not near the capacity (typical).

• All operations are constant-time.

• Memory use is linear in the size of the collection,
when it is nonempty.

• No limits within the code on the collection size.

public class Stack<Item>

 Stack<Item>() create a stack of items, all of type Item

 void push(Item item) add item to stack

 Item pop() remove and return the item most recently pushed

boolean isEmpty() is the stack empty ?

 int size() # of items on the stack

Benchmarking the strawman stack implementation

37

It does not implement the stack API or meet the performance specifications.

✘

✓
✘

StrawStack implements a fixed-capacity collection that behaves like a stack if the data fits.

Nice try, but need a new data structure.

✘

StrawStack requires client to provide capacity
Stack API

✘
StrawStack
works only
for strings

Performance
specifications

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.12.C.StacksQueues.Strawman

12. Stacks and Queues

•APIs
•Clients
•Strawman implementation
•Linked lists
•Implementations

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, THEORY, AND MAC HINES

CS.12.D.StacksQueues.Lists

Data structures: sequential vs. linked

40

Sequential data structure

• Put objects next to one another.

• Machine: consecutive memory cells.

• Java: array of objects.

• Fixed size, arbitrary access.

Linked data structure

• Associate with each object a link to another one.

• Machine: link is memory address of next object.

• Java: link is reference to next object.

• Variable size, sequential access.

• Overlooked by novice programmers.

• Flexible, widely used method for organizing data.

i th element

next element

addr value

C0 "Alice"

C1 "Bob"

C2 "Carol"

C3

C4

C5

C6

C7

C8

C9

CA

CB

Array at C0

addr value

C0 "Carol"

C1 null

C2

C3

C4 "Alice"

C5 CA

C6

C7

C8

C9

CA "Bob"

CB C0

Linked list at C4

Simplest singly-linked data structure: linked list

41

Linked list

• A recursive data structure.

• Def. A linked list is null or a reference to a node.

• Def. A node is a data type that contains a reference to a node.

• Unwind recursion: A linked list is a sequence of nodes.

Representation

• Use a private nested class Node to implement the node abstraction.

• For simplicity, start with nodes having two values: a String and a Node.

private class Node
{
 private String item;
 private Node next;
}

"Alice" "Bob" "Carol"first

null
item next

A linked list

14. Stacks and Queues

•APIs
•Clients
•Strawman implementation
•Linked lists
•Implementations

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

PART I I : ALGORITHMS, THEORY, AND MAC HINES

CS.12.E.StacksQueues.Implementations

Pushdown stack implementation: Instance variables and constructor

43

Data structure choice. Use a linked list to hold the collection. instance variables
constructor

methods

test client

public class Stack<Item>
{
 private Node first = null;
 private int N = 0;

 private class Node
 {
 private Item item;
 private Node next;
 }
...
}

objects on stack

first

use in place of concrete type

Annoying exception (not a problem here).
 Can't declare an array of Item objects (don't ask why).
 Need cast: Item[] a = (Item[]) new Object[N]

Stack implementation: Test client

public static void main(String[] args)
{
 Stack<String> stack = new Stack<String>();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.equals("-"))
 System.out.print(stack.pop() + " ");
 else
 stack.push(item);
 }
 StdOut.println();
}

44

What we expect, once the implementation is done.

instance variables

constructors

methods

test client

% more tobe.txt
to be or not to - be - - that - - - is

% java Stack < tobe.txt
to be not that or be

Stack implementation: Methods

public class Stack<Item>
{
...
 public boolean isEmpty()
 { return first == null; }
 public void push(Item item)
 {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 N++;
 }
 public Item pop()
 {
 Item item = first.item;
 first = first.next;
 N--;
 return item;
 }
 public int size()
 { return N; }
...
}

45

Methods define data-type operations (implement the API).
instance variables

constructors

methods

test client

add a new node
to the beginning of the list

remove and return
first item on list

first

first

first

first

second

instance
variable

local variable
in push()

might also use N == 0

Stack implementation

public class Stack<Item>
{
 private Node first = null;
 private int N = 0;
 private class Node
 {
 private Item item;
 private Node next;
 }
 public boolean isEmpty()
 { return first == null; }
 public void push(Item item)
 {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 N++;
 }
 public Item pop()
 {
 Item item = first.item;
 first = first.next;
 N--;
 return item;
 }
 public int size()
 { return N; }
 public static void main(String[] args)
 { // See earlier slide }
}

46

instance variables

nested class

methods

test client

% more tobe.txt
to be or not to - be - - that - - - is

% java Stack < tobe.txt
to be not that or be

Trace of stack implementation (linked list representation)

47

push pop

to

be

or

not

to

- to

be

- be

- not

that

- that

- or

- be

is

be to

or be to

not or be to

to not or be to

be not or be to

that or be to

is to

to

Push to the
beginning

Pop from the
beginning

not or be to

not or be to

or be to

or be to

be to

to

• All operations are constant-time.

• Memory use is linear in the size of the collection,
when it is nonempty.

• No limits within the code on the collection size.

Performance
specifications

Benchmarking the stack implementation

48

It does implement the API and meet the performance specifications.

Stack implements the stack abstraction.

Made possible by linked data structure.

public class Stack<Item>

 Stack<Item>() create a stack of items, all of type Item

 void push(Item item) add item to stack

 Item pop() remove and return the item most recently pushed

boolean isEmpty() is the stack empty ?

 int size() # of items on the stack

Stack API

✓
✓

✓
✓

Also possible to implement the queue abstraction with a singly-linked list (see text).

dequeue(): same code as pop()
enqueue(): slightly more complicated

public class Queue<Item>

 Queue<Item>() create a queue of objects, all of type Item

 void enqueue(Item item) push item onto the queue

 Item dequeue() remove and return the object most recently enqueued

boolean isEmpty() is the queue empty ?

 int size() # of objects on the queue

ADT for queues

49

API

An ADT allows us to write Java programs that use and manipulate queues.

A queue is an idealized model of a FIFO storage mechanism.

Performance specs • All operations are constant-time.

• Memory use is linear in the size of the collection,
when it is nonempty.

• No limits within the code on the collection size.

Queue implementation: Instance variables and constructor

50

Data structure choice. Use a linked list to hold the collection.
instance variables
constructor

methods

test client

public class Queue<Item>
{
 private Node first = null;
 private Node last = null;
 private int N = 0;

 private class Node
 {
 private String item;
 private Node next;
 }

 public Queue()
 {
 first = null;
 last = null
 N = 0;
 }
...
}

objects on queue

first
default constructor

redundant code
not needed

last

Queue implementation: Test client

public static void main(String[] args)
{
 Queue<String> q = new Queue<String>();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.compareTo("-") != 0)
 q.enqueue(item);
 else
 System.out.print(q.dequeue());
 }
 System.out.println();
}

51

What we expect, once the implementation is done.

instance variables

constructors

methods

test client

% more tobe.txt
to be or not to - be - - that - - - is

% java Queue < tobe.txt
to be or not to be

Queue implementation: Methods

public class Queue<Item>
{
...
 public boolean isEmpty()
 { return first == null; }
 public void enqueue(Item item)
 {
 last.next = new Node();
 last = last.next;
 last.item = item;
 N++;
 }
 public Item dequeue()
 {
 String item = first.item;
 first = first.next;
 N--;
 return item;
 }
 public int size()
 { return N; }
...
}

52

Methods define data-type operations (implement the API).
instance variables

constructors

methods

test client

after
dequeue() first

after
enqueue()

first

first

add a new node
to the end of the list

remove and return
first item on list

(same as stack pop) last

last

last

Summary

53

Stacks and queues

• Fundamental collection abstractions.

• Differ only in order in which items are removed.

• Performance specifications: Constant-time for all
operations and space linear in the number of objects.

Linked structures

• Fundamental alternative to arrays.

• Enable implementations of the stack/queue abstractions
that meet performance specifications.

Next: Symbol tables

push to the
beginning

pop from the
beginning

Last
In

First
Out

enqueue at
the end

dequeue from
the beginning

First
In

First
Out

stack queue

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.12.E.StacksQueues.Implementations

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

12. Stacks and Queues

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I I : ALGORITHMS, THEORY, AND MAC HINES

Section 4.3

http://introcs.cs.princeton.edu

Introduce Homework

