Stacks and Queues

CS 121: Data Structures

START RECORDING

Outline

e Attendance quiz
 Overview of stacks and queues

* Implementation of stacks and queues

Attendance Quiz

Attendance Quiz:
Linked Lists

 Scan the QR code, or find
today’s attendance quiz under
the “Quizzes” tab on Canvas

e Password: to be announced

public class IntLinkedList {

private class Node {
1nt val;
Node next;

public Node(int v) {
val = v;
next = null;

¥

orivate Node head; // the first node

orivate Node tail; // the last node
orivate 1int length; // number of nodes in the list

// constructor 1nitializes an empty linked list
public IntLinkedList() {

head = null;
tail = null;
length = 0;
}
// TODO

// public void addFirst(int val) { }
// public void addLast(int val) { }

Attendance Quiz:
Linked Lists

* Write your name

* Write code for addFirst() and
addLast()

public class IntLinkedList {

private class Node {
1nt val;
Node next;

public Node(int v) {
val = v;
next = null;

¥

orivate Node head; // the first node

orivate Node tail; // the last node
orivate 1int length; // number of nodes in the list

// constructor 1nitializes an empty linked list
public IntLinkedList() {

head = null;
tail = null;
length = 0;
}
// TODO

// public void addFirst(int val) { }
// public void addLast(int val) { }

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

COMPUTER 12. Stacks and Queues
SCIENCE

. An In’rerdlsmpllnary Approach |

: h , ROBERT SEDGEWICK ,
:) , ¢ TN AYNE
Sectlon 4.3 CARE NI

http://introcs.cs.princeton.edu

http://introcs.cs.princeton.edu

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

12 - Stacks and Quevues

e APls
e Clients

e Strawman implementation
* Linked lists

* Implementations

CS.12.A.StacksQueues.APIs

Choosing appropriate data structures

When implementing a Java class: Which data structures structures to use?
e Resource 1: How much memory is needed?

public class Complex

e Resource 2: How much time do data-type methods use? Conplex(double real, double Tnag)
| Complex plus(Complex b) sum of this number and b
public class Char¢ ™ Complex times(Complex b) product of this number and b
Charge(dot double abs() magnitude
double SR S String toString() string representation
Data StrUCtu res String Turtle(double x0, double y0, double q0)
void turnLeft(double delta) rotate delta degrees counterclockwise
¢ Re p re S e nt d ata m void goForward(double step) move distance step, drawing a line

. . TTsTrTngTrostrong () STrTAg representation ol tHIsTcoTor
® Represent rEIatIOnShlpS among data. boolean equals(Color c) is this color the same as c's? \

e Some are built in to Java: 1D arrays, 2D arrays, . ..
e Most are not: linked list, circular list, tree, . . .

O/O\C{ A
Data structure comparison: arrays vs linked lists ? < é}é\o
e Arrays allow constant-time access of any element, but A C{
growth requires linear time

e Linked lists allow constant-time access of the first and
last elements, and constant-time growth O—0—0—0—0—0

Stack and Queue APIs

A collection is an ADT whose values are a multiset of items, all of the same type.

Two fundamental collection ADTs differ in just a detail of the specification of their operations.

Add to the Take from the Take fror_n the
_ beginning beginning _ beginning
Stack operations N/ Queue operations
e Add an item to the collection. e Add an item to the collection.
e Remove and return the item | act e Remove and return the item First
most recently added (LIFO). In least recently added (FIFO). Fi'pst
e Test if the collection is empty. F(')rustt e Test if the collection is empty. Out
e Return the size of the collection. e Return the size of the collection.
1
Stacks and queues both arise naturally in countless applications. tﬁide:,%

A key characteristic. No limit on the size of the collection.

|0

Example of stack operations

Push. Add an item to the collection.
Pop. Remove and return the item most recently added.

push to

the top 269 e
push to be or not to - be -
pop to be

be

\/ ///ﬂ
to
\ 4
) Nnot not Not not Not
stack
after | | be||be]|bel]|be]|be]l|be]l| be
operation
I to \ to || to || to || to || to || to |] to

push to pop from

the top

- that -
not that
\ 4
that
or or or
be be be

to to to

the top

N/

Last
In
First
Out

- - IS
or be

be iS

to ItO\ to

Stack

https://www.webstaurantstore.com/

12

Example of queue operations

Enqueue. Add an item to the collection.

Dequeue. Remove and return the item /east recently added.

enqueue
dequeue

queue

contents
dfter

operation

to

 to

be

or

to to
be be
or

-

enqueue at

the end

not

{o
be
or

not

to

dequeue from the beginning ——

to
be
or
Nnot

to

to

be
or
not

to

be

be
or
not

{o
be

be

or
not

{o
be

or

not

{o
be

dequeue from
the beginning

I
First

First
Out

T

enqueue at
the end

not to be |that

to be ||that
be ||that
that

1S

that

1S

|3

Quevue

— —— e

A /\\\ N 4 |{

ttps://cmos.wikiedia.org/wiki/
File:People_waiting_a_train_of_Line_13_to_come_02.JPC

| 4

Parameterized data types

Goal. Simple, safe, and clear client code for collections of any type of data.

Java approach: Parameterized data types (generics)
e Use placeholder type name in definition.
e Substitute concrete type for placeholder in clients. < stay tuned for examples

public class Stack<Item>

Stack<Item>() create a stack of items, all of type Item
Stack API void push(Item 1tem) add 1tem to stack
ITtem pop() remove and return the item most recently pushed
boolean 1sEmpty() is the stack empty?
1int size() # of objects on the stack
public class Queue<Item>
Queue<Item>() create a queue of items, all of type ITtem
vold enqueue(Item 1tem) add item to queue
Queue AP Item dequeue() remove and return the item least recently enqueued
boolean 1sEmpty() is the queue empty?

1int size() # of objects on the queue

|5

Performance specifications

Challenge. Provide guarantees on performance.

Goal. Simple, safe, clear, and efficient client code.

Typically required for
client code to be scalable

/

e All operations are constant-time.

Performance e Memory use is linear in the size of the
specifications collection, when it is nonempty.

e No limits within the code on the collection size.

Java. Any implementation of the APl implements the stack/queue abstractions.

This course: Implementations that do not meet performance specs do not implement the abstractions.

|6

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

CSJIZ.A.StaciSQueues.APIs
Y &hHhat n

. ‘
»”

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

12 - Stacks and Quevues

e APls
e Clients

e Strawman implementation
* Linked lists

* Implementations

CS.12.B.StacksQueues.Clients

Stack and queue applications

Queues
e First-come-first-served resource allocation.
e Asynchronous data transfer (StdIn, StdOut).
e Dispensing requests on a shared resource.
e Simulations of the real world.

Stacks
e Last-come-first-served resource allocation.
e Function calls in programming languages.
e Basic mechanism in interpreters, compilers.
e Fundamental abstraction in computing.

19

Queve client example: Read all strings from Stdln into an array

Challenge

e Can’t store strings in array
before creating the array.

e Can’t create the array without
knowing how many strings are
in the input stream.

e Can't know how many strings
are in the input stream without
reading them all.

Solution: Use a Queue<String>.

public class QEXx Note: StdIn has this

{ / functionality

public static String[] readAl1Strings()
{ /* See next slide. */ }

public static void main(String[] args)
{
String[] words = readAl11Strings();
for (int 1 = 0; 1 < words.length; 1++)
StdOut.printlin(words[1]);

¥
h
% java QEx < moby.txt
moby
% more moby.txt dick
moby dick herman
herman melville melville
call me ishmael some years ago never call
mind how long precisely having me
little or no money 1shmael
some
years

20

Queve client example: Read all strings from Stdln into an array

. . ublic static Strin readAl1Strings
Solution: Use a Queue<String>. P gl 9s ()

{
* Store strings in the queue. Queue<String> q = new Queue<String>Q);
e Get the size when all have been while (!StdIn.isEmpty())
read from StdIn g.enqueue(StdIn.readString());

int N = g.s1ze();
String[] words = new String[N];
e Copy the strings into the array. for (int 1 = 0; 1 < N; T++)
words[1] = g.dequeue();
return words;

 Create an array of that size.

21

Stack example: "Back" button in a browser

® 00 Introduction to Programming in Java: An Interdisciplinary Approach "

| < | > | @ @ '€ introcs.cs.princeton.edu ¢ &J

Typical scenario

e 00 Algorithms and Data Structures

Pi'o | < | > | @ @ \Q introcs.cs.princeton.edu

e Visit a page.

Stacks and Queues

e Click a link to another page.

Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne

e Click a link to another page.

INTRO TC ALGORITHMS, 4TH EDITION
1. Ele
2. F

3. OOP

e Click a link to another page.
o [o s e Click "back"” button.

. Prolc algorithms and data structures
. A

: . .]|]
;- = e Click "back” butt
. Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [Amazon - Pearson - InformiT] surveys the most important algorithms and I C a C u O n .

ALGORITHMS, 4TH EDITION

data structures in use today. The textbook is organized into six chapters:

1. Fundamentals
- Sc 2. Sorting * Chapter 1: Fundamentals introduces a scientific and engineering basis for comparing algorithms and making predictions. It also includes our programming () C I i C k " b a C k " b u tt O n i
ALGORN 3. Searching model.
4. Graphs ® Chapter 2: Sorting considers several classic sorting algorithms, including insertion sort, mergesort, and quicksort. It also includes a binary heap implementation of
5. Strings a priority queue.
6. Context ® Chapter 3: Searching describes several classic symbol table implementations, including binary search trees, red-black trees, and hash tables.
® Chapter 4. Graphs surveys the most important graph processing problems, including depth-first search, breadth-first search, minimum spanning trees, and

A shortest paths.
LGC

= * Chapter 5: Strings investigates specialized algorithms for string processing, including radix sorting, substring search, tries, regular expressions, and data

ANALYSIS -
ALGORITHMS compression.

® Chapter 6: Context highlights connections to systems programming, scientific computing, commercial applications, operations research, and intractability.

Applications to science, engineering, and industry are a key feature of the text. We motivate each algorithm that we address by examining its impact on specific
applications.

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for example, while programming and
while browsing the web); the textbook is for your use when initially learning new material and when reinforcing your understanding of that material (for example, when

Ewrain reviewing for an exam). The booksite consists of the following elements:

References

Online Course * Excerpts. A condensed version of the text narrative, for reference while online.
Lecture Slides

e Java code. The algorithms and clients in this textbook.

e Exercise solutions. Solutions to selected exercises. http - //'i nt Frocs.cs. pr'-i nceton . edU/j ava/43StaCk/

_ To get started. Here are instructions for setting up a simple Java programming environment [Mac OS X - Wind

Programming Assignments

Online course. You can take our free Coursera courses: Algorithms, Part | (next offering August 23, 2013) and .

http://1ntrocs.cs.princeton.edu/java/40algorithms/

http://1ntrocs.cs.princeton.edu/java/home/

http://introcs.cs.princeton.edu/java/home/
http://introcs.cs.princeton.edu/java/40algorithms/
http://introcs.cs.princeton.edu/java/43stack/

Autoboxing

Challenge. Use a primitive type in a parameterized ADT.

Wrapper types primitive type

e Each primitive type has a wrapper reference type. int

e Wrapper type has larger set of operations than primitive type. char

Example: Integer.parseInt().
. double

e Instances of wrapper types are objects.

* Wrapper type can be used in a parameterized ADT. boolean
Autoboxing. Automatic cast from primitive type to wrapper type.
Auto-unboxing. Automatic cast from wrapper type to primitive type.

Stack<Integer> stack = new Stack<Integer>();
Simple client code —— stack.push(17); // Autobox (1nt -> Integer)

(no casts) int a = stack.popQ); // Auto-unbox (Integer -> 1nt)

wrapper type
Integer
Character

Double

Boolean

23

Stack client example: Postfix expression evaluation

Infix. Standard way of writing arithmetic expressions, using parentheses for precedence.

Example. (1 +((2+3)*(4*5))) = (1+(5720)) = 101

Postfix. Write operator after operands (instead of in between them).

Example. 1 2 3 + 4 5 * * + «—also called "reverse Polish" notation (RPN) Jan tukasiewicz
1878—-1956

Remarkable fact. No parentheses are needed!

] 2 3 +4 45 * * 4
: find first operator, convert
There is only one 1 (2+3)4 5 * * 4 «— o &
way to parenthesize to infix, enclose in HP-35 (1972)
a postfix expression. * * First handheld calculator.
I ((2+3)%(475))+ > iterate, treating subexpressions "Enter” means "push".
in parentheses as atomic
(1+((24+3)*(4%5))) No parentheses. @
Next. With a stack, postfix expressions are easy to evaluate. T

Made slide rules obsolete (1)
24

Postfix arithmetic expression evaluation

Algorithm

e While input stream is nonempty, read a token.

e Value: Push onto the stack.

e Operator: Pop operand(s), apply operator, push the result.

20 100101

— U1 DN U

20

100

‘101‘

25

Stack client example: Postfix expression evaluation

public class Postfix

{

public static void main(String[] args)

{

Stack<Double> stack = new Stack<Double>();
while (!StdIn.isEmpty())

{

}

String token = StdIn.readString();
1t (token.equals("*"))
stack.push(stack.pop() * stack.pop());
else 1T (token.equals('"+"))
stack.push(stack.pop() + stack.pop());
else if (token.equals("-"))
stack.push(-stack.pop() + stack.pop());
else if (token.equals("/"))
stack.push((1.0/stack.pop()) * stack.pop());
else 1 (token.equals('sqgrt"))
stack.push(Math.sqrt(stack.pop()));
else

stack.push(Double.parseDouble(token));

StdOut.println(stack.pop());

% java Postfix
123 +45%** +
101.0

% java Postfix
15 sqrt + 2 / 1'+-V/§

1.618033988749895 2

Perspective
e Easy to add operators of all sorts.

e Can do infix with two stacks (see text).

e Could output machine language code.

e Indicative of how Java compiler works.

26

Stack client example: Infix expression evaluation

Infix. Standard way of writing arithmetic expressions, using parentheses for precedence.

Example. (1 +((2+3)*(4*5))) = (1+(5%20)) = 101

Dijkstra. With two stacks, infix expressions are easy to evaluate.

Edsger Dijkstra
1878—1956
Dijkstra's 2-stack algorithm
e While input stream is nhonempty, read a token.
e Value: Push onto the value stack.
e Operator: Push onto the operator stack.
e Left paren: Ignore.
e Right paren: Pop two values, pop operator, apply operator to values, push the result.

27

Real-world stack application: PostScript

PostScript (Warnock-Geschke, 1980s): A turtle with a stack.

e Postfix program code (push literals; functions pop arguments).
e Add commands to drive virtual graphics machine.

e Add loops, conditionals, functions, types, fonts, strings....

/ push(100)
PostScript code 100 moveto<

— call "moveto" (takes args from stack)

100 300 Iineto |

300 300 lineto define a path
300 100 Tineto

stroke < draw the path

A simple virtual machine, but not a toy
e Easy to specify published page.
e Easy to implement on various specific printers.
e Revolutionized world of publishing.

Another stack machine: The JVM (Java Virtual Machine)!

28

Image sources

http://pixabay.com/en/book-stack-learn-knowledge-1ibrary-168824/
http://upload.wikimedia.org/wikipedia/commons/2/20/Cars_in_queue_to_enter_Gibraltar_from_Spain.jpg

CS.12.B.StacksQueues.Clients

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

12 - Stacks and Quevues

e APls
e Clients

e Strawman implementation
* Linked lists

* Implementations

CS.12.C.StacksQueues.Strawman

Strawman ADT for pushdown stacks

Warmup: simplify the ADT
e Implement only for items of type String.
e Have client provide a stack capacity in the constructor.

values

public class StrawStack

StrawStack(int max) create a stack of capacity max

void push(String 1item) add 1tem to stack
Strawman API | |
String pop() return the string most recently pushed
boolean isEmpty() is the stack empty?
int size() number of strings on the stack

Rationale. Allows us to represent the collection with an array of strings.
31

Strawman implementation: Instance variables and constructor

instance variables

Data structure choice. Use an array to hold the collection. instance variables |

public class StrawStack

{ alo:
private String[] a; a[1] |
. . - items on stack
private 1nt N = 0O; al[2]
public StrawStack(int max) N——>
{ a = new String[max]; }

"upside down"
1 representation of

32

Strawman stack implementation: Test client

public static void main(String[] args)

{
1nt max = Integer.parselnt(args[0]);
StrawStack stack = new StrawStack(max)
while (!StdIn.isEmpty())

{

String 1tem = StdIn.readString();
1 (1tem.equals("-"))

StdOut.print(stack.pop());
else

stack.push(item);

}
StdOut.printin();

test client

% more tobe.txt
to be or not to - be - - that - - - 1s

% java StrawStack 20 < tobe.txt
to be not that or be

What we expect, once the implementation is done. /

Strawman implementation: Methods

Methods define data-type operations (implement APIs).

after
public class StrawStack push() methods

{
...pub1ic boolean 1sEmpty()
{ return (N==0); }

public void push(String 1tem)

{ a[N++] = 1tem; } N —
public String pop()

{ return a[--N]; }
after

public int size() N — pop ()
{ return N; }

all constant-time
} one-liners!

N —>

Strawman pushdown stack implementation

public class StrawStack

{
private String[] a; . .
orivate int N = 0; < instance variables
public StrawStack(int max)
{ a = new String[max]; } < constructor

public boolean 1sEmpty()
{ return (N == 0); }

public void push(String 1tem)

{ a[N++] = item; } < methods

public String pop(Q)
{ return a[--N]; }

public 1nt size()

% more tobe.txt

{ return N: } to be or not to - be - - that - - - 1s
public static void main(String[] args) _
{ % java StrawStack 20 < tobe.txt

int max = Integer.parselnt(args[0]); to be not that or be

StrawStack stack = new StrawStack(max);

while (!StdIn.isEmpty())

{
String item = StdIn.readString(); «—— test client
1f (item.equals('-"))
StdOut.print(stack.pop(Q) + " ");
else
stack.push(item);

}
StdOut.printin(Q);

Trace of strawman stack implementation (array representation)

push to be or not to - be - - that - - - S
pop to be not that or be
a[0] to to to to to to to to to to to to to to
a[l] = be be be be be be be be be be be = iS
a[2] 14 L or or or or or or or or or = .
a[3] N " not not not not not=p- that =
a[4] > to > be = .
a[5] . =
a[6]
stack 2l
contents a(8]
dfter alo9.
operation i

| =

N\ | /

Significant wasted space when stack size
IS not near the capacity (typical).

/ l N\

M N=

| O T

VRN -VIRN VI VRN -V VIS VR VI VI ¥
©e maw

O

36

Benchmarking the strawman stack implementation

StrawStack implements a fixed-capacity collection that behaves like a stack if the data fits.

It does not implement the stack APl or meet the performance specifications.

StrawStack requires client to provide capacity

Stack APl public class Stack<Item>/

Stack<Item@x create a stack of items, all of type Item

void push(Item 1tem) additem to stack

StrawStack
works onIy E— xpop() remove and return the item most recently pushed
for strings boolean 1sEmpty() is the stack empty?
1nt si1ze() # of items on the stack
e All operations are constant-time. v
Performance e Memory use is linear in the size of the collection,

X

e No limits within the code on the collection size. X

specifications when it is nonempty.

Nice try, but need a new data structure.

37

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

CSJ12.C.StaciSQueues.Strawman
Y &hHhat n

. ‘
»”

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

12 - Stacks and Quevues

e APls
e Clients

e Strawman implementation
e Linked lists

* Implementations

CS.12.D.StacksQueues.Lists

Data structures: sequential vs. linked

Sequential data structure
e Put objects next to one another.
e Machine: consecutive memory cells.
e Java: array of objects.
e Fixed size, arbitrary access. «—— jth element

Linked data structure
e Associate with each object a link to another one.
e Machine: link is memory address of next object.
e Java: link is reference to next object.
e Variable size, sequential access. «<—— next element
e Overlooked by novice programmers.
e Flexible, widely used method for organizing data.

Array at CO

addr
—> (0
Cl
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB

value

"Alice”
"BOb"

"Carol"

Linked list at C4

addr
CO
Cl
C2
C3
—_— (4
C5
C6
C7
C8
C9
CA
CB

value

"Carol"

null

"Alice”

CA

"BOb"
CO

40

Simplest singly-linked data structure: linked list

Linked list
e A recursive data structure. orivate class Node
e Def. A linked list is null or a reference to a node. i . .
private String 1tem;
e Def. A node is a data type that contains a reference to a node. private Node next;
}

e Unwind recursion: A linked list is a sequence of nodes.

Representation
e Use a private nested class Node to implement the node abstraction.
e For simplicity, start with nodes having two values: a String and a Node.

A linked list

first — "Alice" e—— "Bob" e—— "Carol" c\

item next

null

41

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

14 . Stacks and Quevues

e APls
e Clients

e Strawman implementation
* Linked lists
* Implementations

CS.12.E.StacksQueues.Implementations

Pushdown stack implementation: Instance variables and constructor

Data structure choice. Use a linked list to hold the collection.

constructor

public class Stack<Item>

{
private Node first = null;
private 1nt N = 0O;
orivate class Node use in place of concrete type
{ / obiects on stack
private Item 1tem;
private Node next;
¥
first — —_> —> —> .
}

Annoying exception (not a problem here).
Can't declare an array of Item objects (don't ask why).
Need cast: Item[] a = (Item[]) new Object[N]

43

Stack implementation: Test client

public static void main(String[] args)
{

Stack<String> stack = new Stack<String>(Q);
while (!StdIn.isEmpty())

{

String 1tem = StdIn.readString();

test client
1T (1tem.equals("-"))
System.out.print(stack.pop() + " ");
else
stack.push(1tem);
}
StdOut.printin();
} % more tobe.txt
to be or not to - be - - that - - - 1s

% java Stack < tobe.txt
to be not that or be

What we expect, once the implementation is done. /

Stack implementation: Methods

Methods define data-type operations (implement the API).

public class Stack<Item>

{

-.pub11c boolean 1sEmpty()(/////

might also use N ==

' ' 1tem;
' . second;
N++; add a new node

{ return first == null;

public void push(Item 1tem)

{
Node second = first;
first = new Node();
first.1tem =
first.next =

}

public Item pop()

{
Ttem 1tem = first.item;
first = first.next;
N--;
return item;

}

public 1nt size()
{ return N; }

to the beginning of the list

\ remove and return

first item on list

methods
instance
variable
first —» —> —> .
first —» —> —> —>
nd local variable

Dl in push()
first —» —> —> .
first — —> .

Stack implementation

public class Stack<Item>

{
ivate Node first = 11; : :
rivate int N = 05 e instance variables
private class Node
{
private Item item; [< nested class
private Node next;
}
pubTic booTean isEmpty()
{ return first == null; }
public void push(Item 1tem)
{
Node second = first; o
first = new Node() : % more tobe.txt |
first.next = second;
N++; % java Stack < tobe.txt
g blic Ttem pop() < methods to be not that or be
ubT1i
{
Ttem 1tem = first.item;
first = first.next;
N--3
return item;
}
public 1nt size()
{ return N; }
ublic static void main(Strin args .
‘{) (} gLl args) «— test client

Trace of stack implementation (linked list representation)

Push to the
push pop begifning
to —> to |-
be —> be |~——>| to
or —>| or |~=—>| be
hot —>| not | =—>| or
to —>| to |*—>| not
- to ‘/—> not | =—>| or
be —> be | =—>| not
- be ‘/—> not | —>| or
= not ‘/—> or | ~—>| be
that —>| that | =—>| or
- that ‘/—> or |*—>| be
- or ‘/—> be |+ —>| to
- be ‘/—> to | e
IS —>| is |~—>| to |*

T

Pop from the
beginning

RERERRNRNY

to

be

or

be

or

be

to

be

to

RENERRNS

to

be

to

be

SE!

to

to

to

to

47

Benchmarking the stack implementation

Stack implements the stack abstraction.

It does implement the APl and meet the performance specifications.

Stack APl public class Stack<Item>

Stack<Item>() create a stack of items, all of type Item

void push(Item i1tem) add item to stack

Ttem pop() remove and return the item most recently pushed
boolean isEmpty() is the stack empty?
1nt si1ze() # of items on the stack ‘/

e All operations are constant-time. v

Performance Memory use is linear in the size of the coIIection,‘/
specifications when it is nonempty.

e No limits within the code on the collection size. ‘/

dequeue(): same code as pop()
Made possible by linked data structure. enqueue(): slightly more complicated

Also possible to implement the gueue abstraction with a singly-linked list (see text).

48

ADT for queues

A queue is an idealized model of a FIFO storage mechanism.

An ADT allows us to write Java programs that use and manipulate queues.

public class Queue<Item>

Queue<Item>() create a queue of objects, all of type ltem
void enqueue(Item 1tem) push item onto the queue
AP Item dequeue() remove and return the object most recently enqueued
boolean 1sEmpty() is the gueue empty?
1nt size() # of objects on the queue

e All operations are constant-time.
Performance specs

e Memory use is linear in the size of the collection,
when it is nonempty.

e No limits within the code on the collection size.

49

Queue implementation: Instance variables and constructor

instance variables

Data structure choice. Use a linked list to hold the collection.
constructor

public class Queue<Item>

{
orivate Node first = null;
orivate Node last = null;
orivate 1nt N = 0;
private class Node obijects on gqueue
{
private String item;
private Node next; k//////;;7”:;:\\\\\\‘
} first —» —> —> —_> .
default constructor /
redundant code last
not needed
}

50

Queue implementation: Test client

public static void main(String[] args)

{

Queue<String> g = new Queue<String>(Q);
while (!StdIn.isEmpty())

{

String 1tem = StdIn.readString(); test client

1f (1tem.compareTo('-") != 0)
g.enqueue(1tem);

else
System.out.print(q.dequeue());

h
System.out.println();

} % more tobe.txt
to be or not to - be - - that - - - 1s

% java Queue < tobe.txt
to be or not to be

What we expect, once the implementation is done. /

51

Queue implementation: Methods

Methods define data-type operations (implement the API).

public class Queue<Item>
{
public boolean 1sEmpty()

add a new node

to the end of the list

{ return first == null; }
public void enqueue(Item 1tem)
{
last.next = new Node();
last = last.next;
last.item = item;: <
N++;
}
public Item dequeue()
{

String 1tem = first.item;
first = first.next;
N--3
return item;
¥

public 1nt size()
{ return N; }

remove and return
«——— first item on list

(same as stack pop)

after
enqueue()

after
dequeue()

methods
first —» —> —> .
last
first —» —> —> —>
1ast/v
first — —> o
last

52

Summary

push to the pop from the dequeue from

Stacks and queues beginning beginning the beginning
e Fundamental collection abstractions. N/ T
e Differ only in order in which items are removed. Last FiILSt
e Performance specifications: Constant-time for all stack Filpst queue | First
operations and space linear in the number of objects. Out Out
T |

enqueue at
the end

Linked structures
e Fundamental alternative to arrays.

e Enable implementations of the stack/queue abstractions
that meet performance specifications.

Next: Symbol tables

53

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

Cs:lé.E.StackEQueues.Imp1ementations

Y &hHat =

. ‘
»”

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

COMPUTER 12. Stacks and Queues
SCIENCE

. An In’rerdlsmpllnary Approach |

: h , ROBERT SEDGEWICK ,
:) , ¢ TN AYNE
Sectlon 4.3 CARE NI

http://introcs.cs.princeton.edu

http://introcs.cs.princeton.edu

Introduce Homework

