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Attendance Quiz



Attendance Quiz: 
Conditionals and Loops 

• Scan the QR code, or find today’s attendance 
quiz under the “Quizzes” tab on Canvas


• Password: to be announced in class


• After five minutes, we will discuss the answers



Attendance Quiz: 
Conditionals and Loops

• Write your name


• Translate the following pseudocode into a Java program, 
Conditionals.java

Repeat the following ten times (use a for loop): 

Print the number of times the program has looped so far 

If the program has looped more than 7 times but isn’t on the final iteration, print 
“Almost done!” 

If the program is on its final iteration, print “All done!” 
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3. Arrays

•Basic concepts 
•Typical array-processing code 
•Two-dimensional arrays

C OMPUTER  SC I EN CE     
 S E D G E W I C K / W A Y N E  

 PART  I :  PROGRAMMIN G IN  JAVA

CS.3.A.Arrays.Basics



Basic building blocks for programming
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any program you might want to write

objects

functions and modules

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

Ability to store and process 
huge amounts of data

arrays
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Your first data structure

Main purpose. Facilitate storage and manipulation of data.

Examples. 

• 52 playing cards in a deck. 

• 100 thousand students in an online class. 

• 1 billion pixels in a digital image. 

• 4 billion nucleotides in a DNA strand. 

• 73 billion Google queries per year. 

• 86 billion neurons in the brain. 

• 3 command line arguments.

A data structure is an arrangement of data that enables efficient processing by a program.

index value

0 2♥ 

1 6♠

2 A♦

3 A♥

...

49 3♣

50 K♣

51 4♠

An array is an indexed sequence of values of the same type.
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Processing many values of the same type

double a0 = 0.0; 
double a1 = 0.0; 
double a2 = 0.0; 
double a3 = 0.0; 
double a4 = 0.0; 
double a5 = 0.0; 
double a6 = 0.0; 
double a7 = 0.0; 
double a8 = 0.0; 
double a9 = 0.0; 
... 
a4 = 3.0; 
... 
a8 = 8.0; 
... 
double x = a4 + a8;

10 values, without arrays

tedious and error-prone code

double[] a; 
a = new double[10]; 
... 
a[4] = 3.0; 
... 
a[8] = 8.0; 
... 
double x = a[4] + a[8];

10 values, with an array

an easy alternative

double[] a; 
a = new double[1000000]; 
... 
a[234567] = 3.0; 
... 
a[876543] = 8.0; 
... 
double x = a[234567] + a[876543];

1 million values, with an array

scales to handle huge amounts of data



Memory representation of an array
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A computer's memory is also an indexed sequence of memory locations. 

• Each primitive type value occupies a fixed number of locations. 

• Array values are stored in contiguous locations.

An array is an indexed sequence of values of the same type.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Critical concepts 

• Indices start at 0. 

• Given i, the operation of accessing the value a[i] is extremely efficient. 

• The assignment b = a makes the names b and a refer to the same array.

stay tuned for many details

it does not copy the array, 
as with primitive types 
(stay tuned for details)

a  for simplicity in this lecture, think of a as the memory address of the first location 
   the actual implementation in Java is just slightly more complicated.



Java language support for arrays
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operation typical code

Declare an array  double[] a;

Create an array of a given length  a = new double[1000];

Refer to an array entry by index  a[i] = b[j] + c[k];

Refer to the length of an array a.length;

Basic support

operation typical code

Default initialization to 0 for numeric types  a = new double[1000];

Declare, create and initialize in one statement double[] a = new double[1000];

Initialize to literal values double[] x = { 0.3, 0.6, 0.1 };

Initialization options

BUT cost of creating an 
array is proportional to 

its length.

no need to use a loop like 
  for (int i = 0; i < 1000; i++) 
     a[i] = 0.0;



Copying an array
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To copy an array, create a new array , then copy all the values.

a

0.3 0.6 0.99 0.01 0.5

b

0.3 0.6 0.99 0.01 0.5

double[] b = new double[a.length]; 
for (int i = 0; i < a.length; i++)  
   b[i] = a[i]; 

i i

Important note: The code b = a does not copy an array (it makes b and a refer to the same array).

a

0.3 0.6 0.99 0.01 0.5

b

double[] b = new double[a.length]; 
b = a; 



Programming with arrays: typical examples
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double[] a = new double[N]; 
for (int i = 0; i < N; i++)  
   a[i] = Math.random(); 

Create an array with N random values

for (int i = 0; i < N; i++) 
   System.out.println(a[i]);

Print array values, one per line

double sum = 0.0; 
for (int i = 0; i < N; i++)  
   sum += a[i];  
double average = sum / N; 

Compute the average of array values

double max = a[0]; 
for (int i = 1; i < N; i++)  
   if (a[i] > max) max = a[i]; 

Find the maximum of array values

double[] b = new double[N]; 
for (int i = 0; i < N; i++)  
   b[i] = a[i]; 

Copy to another array

For brevity, N is a.length and b.length in all this code.

int stake  = Integer.parseInt(args[0]); 
int goal   = Integer.parseInt(args[1]); 
int trials = Integer.parseInt(args[2]);

Access command-line args in args array



Pop quiz 1 on arrays

Q. What does the following code print?
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public class PQarray1 
{ 
    public static void main(String[] args) 
    { 
        int[] a = new int[6]; 
        int[] b = new int[a.length]; 

        b = a; 
        for (int i = 1; i < b.length; i++) 
            b[i] = i; 

        for (int i = 0; i < a.length; i++) 
            System.out.print(a[i] + " "); 
        System.out.println(); 

        for (int i = 0; i < b.length; i++) 
            System.out.print(b[i] + " "); 
        System.out.println(); 
    } 
}



Pop quiz 1 on arrays

Q. What does the following code print?
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public class PQarray1 
{ 
    public static void main(String[] args) 
    { 
        int[] a = new int[6]; 
        int[] b = new int[a.length]; 

        b = a; 
        for (int i = 1; i < b.length; i++) 
            b[i] = i; 

        for (int i = 0; i < a.length; i++) 
            System.out.print(a[i] + " "); 
        System.out.println(); 

        for (int i = 0; i < b.length; i++) 
            System.out.print(b[i] + " "); 
        System.out.println(); 
    } 
}

A. % java PQ4_1 

0 1 2 3 4 5  

0 1 2 3 4 5

After this, b and a refer to the same array



Programming with arrays: typical bugs
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a = new double[10]; 
for (int i = 0; i < 10; i++)  
   a[i] = Math.random(); 

What type of data does a refer to?

Undeclared variable

double[] a; 
for (int i = 0; i < 9; i++)  
   a[i] = Math.random(); 

Never created the array

Uninitialized array

double[] a = new double[10]; 
for (int i = 1; i <= 10; i++)  
   a[i] = Math.random(); 

No a[10] (and a[0] unused)

Array index out of bounds
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Example of array use: create a deck of cards

Define three arrays 

• Ranks. 

• Suits.  

• Full deck. 

Use nested for loops to put all the cards in the deck.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ ...

String[] deck = new String[52];

deck

String[] suit = { "♣", "♦", "♥", "♠" };

0 1 2 3

♣ ♦ ♥ ♠suit

String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" };    

0 1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 J Q K Arank

for (int j = 0; j < 4; j++) 
   for (int i = 0; i < 13; i++) 
      deck[i + 13*j] = rank[i] + suit[j];

j

j

i

better style to use  rank.length and suit.length 
clearer in lecture to use 4 and 13
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Example of array use: create a deck of cards

public class Deck 
{ 
    public static void main(String[] args) 
    { 
        String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" }; 
        String[] suit = { "♣", "♦", "♥", "♠" }; 

        String[] deck = new String[52]; 
        for (int j = 0; j < 4; j++) 
            for (int i = 0; i < 13; i++) 
                deck[i + 13*j] = rank[i] + suit[j]; 

        for (int i = 0; i < 52; i++) 
            System.out.print(deck[i] + " "); 
        System.out.println(); 
    } 
}

% java Deck 

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣ 2♦ 
3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦ 2♥ 
3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥ 2♠ 
3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠ 

% 



Pop quiz 2 on arrays

Q. What happens if the order of the for loops in Deck is switched?
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for (int j = 0; j < 4; j++) 
   for (int i = 0; i < 13; i++) 
      deck[i + 13*j] = rank[i] + suit[j];

for (int i = 0; i < 13; i++) 
   for (int j = 0; j < 4; j++) 
      deck[i + 13*j] = rank[i] + suit[j];



Pop quiz 2 on arrays

Q. What happens if the order of the for loops in Deck is switched?
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for (int j = 0; j < 4; j++) 
   for (int i = 0; i < 13; i++) 
      deck[i + 13*j] = rank[i] + suit[j];

for (int i = 0; i < 13; i++) 
   for (int j = 0; j < 4; j++) 
      deck[i + 13*j] = rank[i] + suit[j];

A. The array is filled in a different order, but the output is the same.

NOTE: Error on page 92 in 3rd printing of text (see errata list on booksite).

0 1 2 ... 12 13 14 15 ... 25 26 27 28 ... 38 39 40 41 ... 51

i

j

0 1 2 3

♣ ♦ ♥ ♠suit

0 1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 J Q K Arank

deck 2♣ 3♣ 4♣ ... A♣ 2♦ 3♦ 4♦ ... A♦ 2♥ 3♥ 4♥ ... A♥ 2♠ 3♠ 4♠ ... A♠



Pop quiz 3 on arrays

Q. Change Deck to put the cards in rank order in the array.
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% java Deck 

2♣ 2♦ 2♥ 2♠ 3♣ 3♦ 3♥ 3♠ 4♣ 4♦ 4♥ 4♠ 5♣ 5♦ 5♥ 5♠ 6♣ 6♦ 6♥ 6♠ 7♣ 7♦ 7♥ 7♠ 8♣ 8♦ 8♥ 8♠ 9♣ 9♦ 9♥ 
9♠ 10♣ 10♦ 10♥ 10♠ J♣ J♦ J♥ J♠ Q♣ Q♦ Q♥ Q♠ K♣ K♦ K♥ K♠ A♣ A♦ A♥ A♠ 
% 

for (int i = 0; i < 13; i++) 
   for (int j = 0; j < 4; j++) 
      // ?



Pop quiz 3 on arrays

Q. Change Deck to put the cards in rank order in the array.
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for (int i = 0; i < 13; i++) 
   for (int j = 0; j < 4; j++) 
      deck[4*i + j] = rank[i] + suit[j];

A. 

% java Deck 

2♣ 2♦ 2♥ 2♠ 3♣ 3♦ 3♥ 3♠ 4♣ 4♦ 4♥ 4♠ 5♣ 5♦ 5♥ 5♠ 6♣ 6♦ 6♥ 6♠ 7♣ 7♦ 7♥ 7♠ 8♣ 8♦ 8♥ 8♠ 9♣ 9♦ 9♥ 
9♠ 10♣ 10♦ 10♥ 10♠ J♣ J♦ J♥ J♠ Q♣ Q♦ Q♥ Q♠ K♣ K♦ K♥ K♠ A♣ A♦ A♥ A♠ 
% 

0 1 2 3 4 5 6 7 8 9 10 11 12 ...

2♣ 2♦ 2♥ 2♠ 3♣ 3♦ 3♥ 3♠ 4♣ 4♦ 4♥ 4♠ 5♣ ...

0 1 2 3

♣ ♦ ♥ ♠suit

0 1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 J Q K Arank

i

j

deck



27



28

Array application: take a card, any card

Problem: Print a random sequence of N cards.

for (int i = 0; i < N; i++) 
{ 
   int r = (int) (Math.random() * 52);  
   System.out.println(deck[r]); 
}

Algorithm  
Take N from the command line and do the following N times 

• Calculate a random index r between 0 and 51. 

• Print deck[r].

Implementation: Add this code instead of printing deck in Deck.

Note: Same method is effective for printing a random sequence from any data collection.

each value between 0 and 51 equally likely
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Array application: random sequence of cards

public class DrawCards 
{ 
   public static void main(String[] args) 
   { 
      int N = Integer.parseInt(args[0]); 

      String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9","10", "J", "Q", "K", "A" }; 
      String[] suit = { "♣", "♦", "♥", "♠" }; 

      String[] deck = new String[52]; 
      for (int i = 0; i < 13; i++) 
         for (int j = 0; j < 4; j++) 
            deck[i + 13*j] = rank[i] + suit[j]; 

      for (int i = 0; i < N; i++) 
      { 
         int r = (int) (Math.random() * 52); 
         System.out.print(deck[r] + " "); 
      } 
      System.out.println(); 
   } 
}

% java DrawCards 10 

6♥ K♦ 10♠ 8♦ 9♦ 9♥ 6♦ 10♠ 3♣ 5♦ 

% java DrawCards 10 

2♦ A♠ 5♣ A♣ 10♣ Q♦ K♣ K♠ A♣ A♦

% java DrawCards 10 

6♠ 10♦ 4♥ A♣ K♥ Q♠ K♠ 7♣ 5♦ Q♠ 

% java DrawCards 10 

A♣ J♣ 5♥ K♥ Q♣ 5♥ 9♦ 9♣ 6♠ K♥

Note: Sample is with replacement (same card can appear multiple times). appears twice
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Array application: shuffle and deal from a deck of cards

Problem: Print N random cards from a deck.

Algorithm: Shuffle the deck, then deal.  

• Consider each card index i from 0 to 51. 

• Calculate a random index r between i and 51. 

• Exchange deck[i] with deck[r] 
• Print the first N cards in the deck.

for (int i = 0; i < 52; i++) 
{ 
   int r = i + (int) (Math.random() * (52-i)); 
   String t = deck[r]; 
   deck[r] = deck[i]; 
   deck[i] = t; 
} 
for (int i = 0; i < N; i++) 
    System.out.print(deck[i]); 
System.out.println();

Implementation
each value 

between i and 51 
equally likely



31

Array application: shuffle a deck of 10 cards (trace)

for (int i = 0; i < 10; i++) 
{ 
   int r = i + (int) (Math.random() * (10-i)); 
   String t = deck[r]; 
   deck[r] = deck[i]; 
   deck[i] = t; 
}

i r
deck

0 1 2 3 4 5 6 7 8 9

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣

0 7 9♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 2♣ 10♣ J♣

1 3 9♣ 5♣ 4♣ 3♣ 6♣ 7♣ 8♣ 2♣ 10♣ J♣

2 9 9♣ 5♣ J♣ 3♣ 6♣ 7♣ 8♣ 2♣ 10♣ 4♣

3 9 9♣ 5♣ J♣ 4♣ 6♣ 7♣ 8♣ 2♣ 10♣ 3♣

4 6 9♣ 5♣ J♣ 4♣ 8♣ 7♣ 6♣ 2♣ 10♣ 3♣

5 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 6♣ 2♣ 10♣ 7♣

6 8 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 2♣ 6♣ 7♣

7 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

8 8 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

9 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

Q. Why does this method work? 

• Uses only exchanges, so the deck after 
the shuffle has the same cards as before. 

• N −i equally likely values for deck[i]. 

• Therefore N ×(N −1)×(N −1)... ×2×1 = N ! 
equally likely values for deck[]. 

Initial order is immaterial.

Note: Same method is effective for randomly rearranging any type of data.
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Array application: shuffle and deal from a deck of cards

public class DealCards 
{ 
   public static void main(String[] args) 
   { 
      int N = Integer.parseInt(args[0]); 

       String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" }; 
       String[] suit = { "♣", "♦", "♥", "♠" }; 

       String[] deck = new String[52]; 
       for (int i = 0; i < 13; i++) 
          for (int j = 0; j < 4; j++) 
             deck[i + 13*j] = rank[i] + suit[j]; 

       for (int i = 0; i < 52; i++) 
       { 
          int r = i + (int) (Math.random() * (52-i)); 
          String t = deck[r]; 
          deck[r] = deck[i]; 
          deck[i] = t; 
       } 

       for (int i = 0; i < N; i++) 
          System.out.print(deck[i]); 
       System.out.println(); 
    } 
}

% java DealCards 5 
9♣ Q♥ 6♥ 4♦ 2♠ 

random poker hand

% java DealCards 13 
3♠ 4♥ 10♦ 6♥ 6♦ 2♠ 9♣ 8♠ A♠ 3♥ 9♠ 5♠ Q♥

random bridge hand



Coupon collector
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Coupon collector problem 

• M different types of coupons. 

• Collector acquires random coupons, one at a time, each type equally likely. 
Q. What is the expected number of coupons needed to acquire a full collection?

McDonald’s Jarek Tuszyński

https://www.youtube.com/watch?v=a6k2Sk6NOPs
https://commons.wikimedia.org/wiki/File:Pokemon_collection.jpg


Coupon collector
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9♣ 5♠ 8♥ 10♦ 2♠ A♠ 10♥ Q♦ 3♠ 9♥ 5♦ 9♣ 7♦ 2♦ 8♣ 6♣ Q♥ K♣ 10♥ A♦ 4♦ J♥

2♠ 3♠ 4♦ 5♠ 6♣ 7♦ 8♥ 9♣ 10♦ J♥ Q♦ K♣ A♠

10♥9♥5♦

9♣

2♦ 8♣ Q♥

10♥

A♦

2 3 4 5 6 7 8 9 10 J Q K A

Example: Collect all ranks in a random sequence of cards (M = 13).

Collection

Sequence

22 cards needed 
to complete 
collection

Coupon collector problem 

• M different types of coupons. 

• Collector acquires random coupons, one at a time, each type equally likely. 
Q. What is the expected number of coupons needed to acquire a full collection?



Array application: coupon collector
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public class Coupon 
{ 
   public static void main(String[] args) 
   { 
      int M = Integer.parseInt(args[0]); 
      int cards = 0;    // number of cards collected 
      int distinct = 0; // number of distinct cards 
       
      boolean[] found = new boolean[M]; 
      while (distinct < M) 
      { 
         int r = (int) (Math.random() * M); 
         cards++; 
         if (!found[r]) 
         { 
            distinct++; 
            found[r] = true; 
         } 
      } 

      System.out.println(cards); 
   } 
}

Key to the implementation 

• Create a boolean array of length M.
(Initially all false by default.) 

• When r generated, check the r th 
value in the array. 

• If true, ignore it (not new). 

• If false, count it as new distinct 
value (and set r th entry to true)

% java Coupon 13 
46 

% java Coupon 13 
22 

% java Coupon 13 
54 

% java Coupon 13 
27

Coupon collector simulation 

• Generate random int values 
between 0 and M −1. 

• Count number used to generate 
each value at least once.
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Array application: coupon collector (trace for M = 6)

boolean[] found = new boolean[M]; 
while (distinct < M) 
{ 
   int r = (int) (Math.random() * M); 
   cards++; 
   if (!found[r]) 
   { 
      distinct++; 
      found[r] = true; 
   } 
}

r
found

distinct cards
0 1 2 3 4 5

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10



37

Simulation, randomness, and analysis (revisited)

Pierre-Simon Laplace 
1749-1827

Remarks 

• Computer simulation can help validate mathematical analysis. 

• Computer simulation can also validate software behavior.

Coupon collector problem 

• M different types of coupons. 

• Collector acquires random coupons, one at a time, each type equally likely. 
Q. What is the expected number of coupons needed to acquire a full collection?

% java Coupon 4 
11 

% java Coupon 13 
38 

% java Coupon 1200 
8789 

% java Coupon 12534 
125671

type M expected wait

playing card suits 4 8

playing card ranks 13 41

baseball cards 1200 9201

Magic™ cards 12534 125508

Example: Is Math.random() 
simulating randomness?

A. (known via mathematical analysis for centuries) About M ln M + .57721M .
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public class Gambler  
{ 
    public static void main(String[] args)  
    { 
      int stake  = Integer.parseInt(args[0]); 
      int goal   = Integer.parseInt(args[1]); 
      int trials = Integer.parseInt(args[2]); 
       
      int wins   = 0; 
      for (int i = 0; i < trials; i++) 
      {   
         int t = stake; 
         while (t > 0 && t < goal) 
         {   
            if (Math.random() < 0.5) t++; 
            else                     t--; 
         } 
         if (t == goal) wins++; 
      } 
      System.out.println(wins + " wins of " + trials); 
   } 
} 

Gambler's ruin simulation, previous lecture
public class CouponCollector 
{ 
    public static void main(String[] args) 
    { 
        int M = Integer.parseInt(args[0]); 
        int trials = Integer.parseInt(args[1]); 
        int cards = 0;  
        boolean[] found; 

        for (int i = 0; i < trials; i++) 
        {   
           int distinct = 0; 
           found = new boolean[M]; 
           while (distinct < M) 
           { 
              int r = (int) (Math.random() * M); 
              cards++; 
              if (!found[r]) 
              {  
                 distinct++;  
                 found[r] = true; 
              } 
           } 
        } 
        System.out.println(cards/trials); 
    } 
}

Analogous code for coupon collector, this lecture

Once simulation is debugged, experimental evidence is easy to obtain.
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% java CouponCollector 4 1000000 
8 

% java CouponCollector 13 1000000 
41 

% java CouponCollector 52 100000 
236 

% java CouponCollector 1200 10000 
9176 

% java CouponCollector 12534 1000 
125920

type M M ln M + .57721M

playing card suits 4 8

playing card ranks 13 41

playing cards 52 236

baseball cards 1200 9201

magic cards 12534 125508

Predicted by mathematical analysis Observed by computer simulation

and Math.random() simulates randomness.Hypothesis. Centuries-old analysis is correct

Coupon collector problem 

• M different types of coupons. 

• Collector acquires random coupons, one at a time, each type equally likely. 
Q. What is the expected number of coupons needed to acquire a full collection?
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Image sources 

  http://www.vis.gr.jp/~nazoya/cgi-bin/catalog/img/CARDSBIC809_red.jpg 

  http://www.alegriphotos.com/Shuffling_cards_in_casino-photo-deae1081e5ebc6631d6871f8b320b808.html 

  http://iveypoker.com/wp-content/uploads/2013/09/Dealing.jpg 

  http://upload.wikimedia.org/wikipedia/commons/b/bf/Pierre-Simon,_marquis_de_Laplace_(1745-1827)_-_Guérin.jpg
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•Basic concepts 
•Examples of array-processing code 
•Two-dimensional arrays
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Two-dimensional arrays

Main purpose. Facilitate storage and manipulation of data.

Examples 

• Matrices in math calculations. 

• Grades for students in an online class. 

• Outcomes of scientific experiments. 

• Transactions for bank customers. 

• Pixels in a digital image. 

• Geographic data 

• ...

0 1 2 3 4 5 ...

0 A A C B A C

1 B B B B A A

2 C D D B C A

3 A A A A A A

4 C C B C B B

5 A A A B A A

...

grade

st
ud

en
t 

ID

x-coordinate

y-
co

or
di

na
te

A two-dimensional array is a doubly-indexed sequence of values of the same type.
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operation typical code

Declare a two-dimensional array  double[][] a;

Create a two-dimensional array of a given length  a = new double[1000][1000];

Refer to an array entry by index  a[i][j] = b[i][j] * c[j][k];

Refer to the number of rows a.length;

Refer to the number of columns a[i].length;

Refer to row i a[i]

can be different 
for each row 

a[][]

a[1]

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5] a[0][6] a[0][7] a[0][8] a[0][9]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5] a[1][6] a[1][7] a[1][8] a[1][9]

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4] a[2][5] a[2][6] a[2][7] a[2][8] a[2][9]

no way to refer 
to column j

a 3-by-10 array 



Java language support for two-dimensional arrays (initialization)
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operation typical code

Default initialization to 0 

for numeric types
 a = new double[1000][1000];

Declare, create and initialize 

in a single statement
double[][] a = new double[1000][1000];

Initialize to literal values

   double[][] p =  
   {  
       { .92, .02, .02, .02, .02 }, 
       { .02, .92, .32, .32, .32 }, 
       { .02, .02, .02, .92, .02 }, 
       { .92, .02, .02, .02, .02 }, 
       { .47, .02, .47, .02, .02 }, 
   };

BUT cost of creating an 
array is proportional to 

its size.

no need to use nested loops like 
  for (int i = 0; i < 1000; i++) 
     for (int j = 0; j < 1000; j++) 
        a[i][j] = 0.0;



Application of arrays: vector and matrix calculations
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Mathematical abstraction: matrix 
Java implementation: 2D array

Vector addition

double[] c = new double[N]; 
for (int i = 0; i < N; i++) 
   c[i] = a[i] + b[i];

Matrix addition

double[][] c = new double[N][N]; 
for (int i = 0; i < N; i++) 
   for (int j = 0; j < N; j++) 
      c[i][j] = a[i][j] + b[i][j];

.70 .20 .10

.30 .60 .10

.50 .10 .40

.80 .30 .50

.10 .40 .10

.10 .30 .40

1.5 .50 .60

.40 1.0 .20

.60 .40 .80

+ =.30 .60 .10 + =.50 .10 .40 .80 .70 .50

Mathematical abstraction: vector 
Java implementation: 1D array
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Mathematical abstraction: matrix 
Java implementation: 2D array

.70 .20 .10

.30 .60 .10

.50 .10 .40

.80 .30 .50

.10 .40 .10

.10 .30 .40

.59 .32 .41

.31 .36 .25

.45 .31 .42
* =

.30 .60 .10 .25· =.50 .10 .40

Vector dot product

double sum = 0.0; 
for (int i = 0; i < N; i++) 
   sum += a[i]*b[i];

Matrix multiplication

double[][] c = new double[N][N]; 
for (int i = 0; i < N; i++) 
   for (int j = 0; j < N; j++) 
      for (int k = 0; k < N; k++) 
         c[i][j] += a[i][k] * b[k][j];

i x[i] y[i] x[i]*y[i] sum

0 0.3 0.5 0.15 0.15

1 0.6 0.1 0.06 0.21

2 0.1 0.4 0.04 0.25

end-of-loop trace

Mathematical abstraction: vector 
Java implementation: 1D array



Pop quiz 4 on arrays

Q. How many multiplications to multiply two N-by-N matrices?
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1. N 

2. N2 

3. N3 

4. N4

double[][] c = new double[N][N]; 

for (int i = 0; i < N; i++) 

   for (int j = 0; j < N; j++) 

      for (int k = 0; k < N; k++) 

         c[i][j] += a[i][k] * b[k][j];



1. N 

2. N2 

3. N3 

4. N4

Pop quiz 4 on arrays

Q. How many multiplications to multiply two N-by-N matrices?
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double[][] c = new double[N][N]; 

for (int i = 0; i < N; i++) 

   for (int j = 0; j < N; j++) 

      for (int k = 0; k < N; k++) 

         c[i][j] += a[i][k] * b[k][j];

Nested for loops: N × N × N
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Self-avoiding random walks

Approach: Use Monte Carlo simulation, recording visited positions in an N-by-N array.

Q. What are the chances of reaching a dead end? dead end

escape
Model: a random process in an N-by-N lattice 
• Start in the middle. 
• Move to a random neighboring intersection 

but do not revisit any intersection. 
• Outcome 1 (escape): reach edge of lattice. 
• Outcome 2 (dead end): no unvisited neighbors.

A dog walks around at 
random in a city, never 
revisiting any intersection. 

Q. Does the dog escape?
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Self-avoiding random walks



Application of 2D arrays: self-avoiding random walks
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public class SelfAvoidingWalker 
{ 
   public static void main(String[] args) 
   { 
      int N = Integer.parseInt(args[0]);  
      int trials = Integer.parseInt(args[1]);   
      int deadEnds = 0;      
      for (int t = 0; t < trials; t++)  
      { 
         boolean[][] a = new boolean[N][N];  
         int x = N/2, y = N/2;   

         while (x > 0 && x < N-1 && y > 0 && y < N-1) 
         { 
            if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1]) 
            {  deadEnds++;  break; } 

            a[x][y] = true; 
            double r = Math.random(); 
            if      (r < 0.25) { if (!a[x+1][y]) x++; } 
            else if (r < 0.50) { if (!a[x-1][y]) x--; } 
            else if (r < 0.75) { if (!a[x][y+1]) y++; } 
            else if (r < 1.00) { if (!a[x][y-1]) y--; } 
         } 
      } 
      System.out.println(100*deadEnds/trials + "% dead ends"); 
   } 
} 

% java SelfAvoidingWalker 10 100000 
5% dead ends 

% java SelfAvoidingWalker 20 100000 
32% dead ends 

% java SelfAvoidingWalker 30 100000 
58% dead ends 

% java SelfAvoidingWalker 40 100000 
77% dead ends 

% java SelfAvoidingWalker 50 100000 
87% dead ends 

% java SelfAvoidingWalker 60 100000 
93% dead ends 

% java SelfAvoidingWalker 70 100000 
96% dead ends 

% java SelfAvoidingWalker 80 100000 
98% dead ends 

% java SelfAvoidingWalker 90 100000 
99% dead ends 

% java SelfAvoidingWalker 100 100000 
99% dead ends

0%

25%

50%

75%

100%

10 20 30 40 50 60 70 80 90 100
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Simulation, randomness, and analysis (revisited again)

Remark: Computer simulation is often the only effective way to study a scientific phenomenon.

Self-avoiding walk in an N-by-N lattice 

• Start in the middle. 

• Move to a random neighboring intersection (do not revisit any intersection).

A. 99+% for N >100 (clear from simulations). YOU can!

Applications 

• Model the behavior of solvents and polymers. 

• Model the physics of magnetic materials. 

• (many other physical phenomena)

Computational models play 
an essential role in modern 
scientific research.

Paul Flory 
1910-1985 

Nobel Prize 1974Q. What is the probability of reaching a dead end?

A. Nobody knows (despite decades of study).
Mathematicians and 
physics researchers 
cannot solve the problem.



Your first data structure
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Some applications in this course:

digital audio

digital images

Arrays: A basic building block in programming 

• They enable storage of large amounts of data (values all of the same type). 

• With an index, a program can instantly access a given value. 

• Efficiency derives from low-level computer hardware organization (stay tuned).

N-body simulation
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  http://en.wikipedia.org/wiki/Airedale_Terrier#mediaviewer/File:Airedale_Terrier.jpg 
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https://commons.wikimedia.org/wiki/File:Periodic_3-body_RKF_Integration.gif

CS.3.C.Arrays.2D



C OMPUTER  SC I EN CE     
 S E D G E W I C K / W A Y N E  

 PART  I :  PROGRAMMIN G IN  JAVA

http://introcs.cs.princeton.edu

R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E
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they also are masters of exposition. I am sure that every serious computer scientist 
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