
Input/Output and Functions
CS 121: Data Structures

Attendance Quiz

Attendance Quiz: Arrays

• Scan the QR code, or find today’s attendance
quiz under the “Quizzes” tab on Canvas

• Password: announced in class

• After five minutes, we will discuss the answers

Attendance Quiz: Arrays
• Write your name

• Translate the following pseudocode into a Java program, Arrays.java

Create an array of strings containing the course IDs of courses you’re enrolled in this
semester (e.g., "CS121")

For each course ID:

Print "Course #N: COURSE_ID" (e.g., "Course #1: CS121”, "Course #2: CS…", …)

Considering Subscribing to the “CS Interest”
Mailing List

• Announcements of events like:

• Welcome back luncheon

• Leetcode programming practice

https://lists.clarku.edu/subscribe/csinterest

https://lists.clarku.edu/subscribe/csinterest

START RECORDING

Outline

• Attendance quiz

• Standard input and output

• Standard drawing

• Functions and libraries: Basic concepts

• Modular programming and libraries

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

4. Input and Output

1.5

http://introcs.cs.princeton.edu

4. Input and Output

•Standard input and output

•Standard drawing

•Fractal drawings

•Animation

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.4.A.IO.Standard

graphics, sound, and image I/O

text I/O

Basic building blocks for programming

10

any program you might want to write

objects

functions and modules

arrays

conditionals and loops

Math

assignment statementsprimitive data types

Ability to interact with
the outside world

text I/O

graphics, sound, and image I/O

11

Input and output

Our approach.

• Define input and output abstractions.

• Use operating system (OS) functionality to connect our Java programs to actual devices.

Goal: Write Java programs that interact with the outside world via input and output devices.

Storage Network CameraTrackpad Microphone

Storage Network Printer Speakers

Keyboard

Typical

INPUT

devices

Display

Typical

OUTPUT

devices

Abstraction

12

plays an essential role in understanding computation.

An abstraction is something that exists only as an idea.

Example: "Printing" is the idea of a program producing text as output.

This lecture. Abstractions for delivering input to or receiving output from our programs.

Good abstractions simplify our view of the world, by unifying diverse real-world artifacts.

Interested in thinking more deeply about this concept?
Consider taking a philosophy course.

13

Terminal. An abstraction for providing input and output to a program.

Quick review

% java DrawCards 10

7♠ 2♥ Q♦ A♠ Q♠ 2♦ Q♥ 6♦ 5♥ 10♦

Virtual

VT-100

terminal

Input from command line

Output to
standard

output stream

14

Input-output abstraction (so far)

standard output stream

command-line

arguments

Java program

A mental model of what a Java program does.

Command-line input. An abstraction for providing arguments (strings) to a program.

Review: command-line input

15

Basic properties

• Strings you type after the program name are available as args[0], args[1], ... at run time.

• Arguments are available when the program begins execution.

• Need to call system conversion methods to convert the strings to other types of data.

public class RandomInt

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 double r = Math.random();

 int t = (int) (r * N); 
 System.out.println(t);

 }

}

% java RandomInt 6

3

% java RandomInt 10000

3184

Review: standard output

Infinity. An abstraction describing something having no limit.

16

Standard output stream. An abstraction for an infinite output sequence.

public class RandomSeq

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 0; i < N; i++)

 System.out.println(Math.random());

 }

}

% java RandomSeq 4

0.9320744627218469

0.4279508713950715

0.08994615071160994

0.6579792663546435

Basic properties

• Strings from System.out.println() are added to the end of the standard output stream.

• Standard output stream is sent to terminal application by default.

% java RandomSeq 1000000

0.09474882292442943

0.2832974030384712

0.1833964252856476

0.2952177517730442

0.8035985765979008

0.7469424300071382

0.5835267075283997

0.3455279612587455

...No limit on amount

of output

17

Improved input-output abstraction

standard output stream

command-line

arguments

Java program

Add an infinite input stream.

standard input stream

Standard input

Infinity. An abstraction describing something having no limit.

18

Standard input stream. An abstraction for an infinite input sequence.

Advantages over command-line input

• Can provide new data while the program is executing.

• No limit on the amount of data we can input to a program.

• Conversion to primitive types is explicitly handled (stay tuned).

Java program

standard input stream

StdIn library

Developed for this course, but broadly useful

• Implement abstractions invented for UNIX in the 1970s.

• Available for download at booksite.

• Included in introcs software you downloaded at the beginning of the course.

19

public class StdIn

 boolean isEmpty() true iff no more values

 int readInt() read a value of type int

 double readDouble() read a value of type double

 long readLong() read a value of type long

 boolean readBoolean() read a value of type boolean

 char readChar() read a value of type char

 String readString() read a value of type String

 String readAll() read the rest of the text

Java program

standard input stream

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

StdOut library

Developed for this course, but broadly useful

• Implement abstractions invented for UNIX in the 1970s.

• Available for download at booksite.

• Included in introcs software you downloaded at the beginning of the course.

20

public class StdOut

 void print(String s) put s on the output stream

 void println() put a newline on the output stream

 void println(String s) put s, then a newline on the stream

 void printf(String f, ...) formatted output

Java program

standard output stream

Q. These are the same as System.out. Why not just use System.out?

A. We can make output independent of system, language, and locale.

A. Less typing!

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

StdIn/StdOut warmup

21

public class AddTwo

{

 public static void main(String[] args)

 {

 StdOut.print("Type the first integer: ");

 int x = StdIn.readInt();

 StdOut.print("Type the second integer: ");

 int y = StdIn.readInt();

 int sum = x + y;

 StdOut.println("Their sum is " + sum);

 }

}

% java AddTwo

Type the first integer:

Type the second integer:

Their sum is 3

Interactive input

• Prompt user to type inputs on standard input stream.

• Mix input stream with output stream.

1
2

StdIn application: average the numbers on the standard input stream

22

% java Average

Average

• Read a stream of numbers.

• Compute their average.

Q. How do I specify the end of the stream?

A. <Ctrl-d> (standard on macOS, Linux)

A. <Ctrl-z> then <Enter> (Windows)

public class Average

{

 public static void main(String[] args)

 {

 double sum = 0.0; // cumulative total

 int n = 0; // number of values

 while (!StdIn.isEmpty())

 {

 double x = StdIn.readDouble();

 sum = sum + x;

 n++;

 }

 StdOut.println(sum / n);

 }

}

Key points

• No limit on the size of the input stream.

• Input and output can be interleaved.

10.0 5.0 6.0
3.0 7.0 32.0
<Ctrl-d>
10.5

Summary: prototypical applications of standard output and standard input

23

StdOut: Generate a stream of random numbers

public class RandomSeq

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 0; i < N; i++)

 StdOut.println(Math.random());

 }

}

StdIn: Compute the average of a stream of numbers

public class Average

{

 public static void main(String[] args)

 {

 double sum = 0.0; // cumulative total

 int n = 0; // number of values

 while (!StdIn.isEmpty())

 {

 double x = StdIn.readDouble();

 sum = sum + x;

 n++;

 }

 StdOut.println(sum / n);

 }

}

Q. Do I always have to type in my input data and print my output?

A. No! Keep data and results in files on your computer, or use piping to connect programs.

Both streams are infinite (no limit on their size).

Redirection: keep data in files on your computer

24

Redirect standard output to a file

RandomSeq

standard output stream file

Average

standard input stream

% java RandomSeq 1000000 > data.txt

% more data.txt

0.09474882292442943

0.2832974030384712

0.1833964252856476

0.2952177517730442

0.8035985765979008

0.7469424300071382

0.5835267075283997

0.3455279612587455

...

"redirect standard output to"

Redirect from a file to standard input

% java Average < data.txt

0.4947655567740991

"take standard input from"

Slight problem. Still limited by maximum file size.

Piping: entirely avoid saving data

25

Q. There's no room for a huge file on my computer. Now what?

Piping. Connect standard output of one program to standard input of another.

A. No problem! Use piping.

RandomSeq standard output stream Averagestandard input stream

Critical point. No limit within programs on the amount of data they can handle.

% java RandomSeq 1000000 | java Average

0.4997970473016028

% java RandomSeq 1000000 | java Average

0.5002071875644842

set up a pipe

It is the job of the system to collect data on standard output and provide it to standard input.

Streaming algorithms

Early computing

• Amount of available memory was much smaller than
amount of data to be processed.

• But dramatic increases happened every year.

• Redirection and piping enabled programs to handle
much more data than computers could store.

26

Modern computing

• Amount of available memory is much smaller than
amount of data to be processed.

• Dramatic increases still happen every year.

• Streaming algorithms enable our programs to handle
much more data than our computers can store.

Lesson. Avoid limits within your program whenever possible.

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://www.digitalreins.com/wp-content/uploads/2013/05/Binary-code.jpg

 http://en.wikipedia.org/wiki/Punched_tape#mediaviewer/File:Harwell-dekatron-witch-10.jpg

CS.4.A.IO.Standard

4. Input and Output

•Standard input and output

•Standard drawing

•Fractal drawings

•Animation

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.4.B.IO.Drawing

29

Further improvements to our I/O abstraction

standard output stream

command-line

arguments

Java program

standard input stream

StdDraw library

• Developed for this course, but broadly useful.

• Available for download at booksite.

• Included in introcs software.

standard drawing

Add the ability to create a drawing.

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

StdDraw library

30

Java program

standard drawing

public class StdDraw

 void line(double x0, double y0, double x1, double y1)

 void point(double x, double y)

 void text(double x, double y, String s)

 void circle(double x, double y, double r)

 void square(double x, double y, double r)

 void polygon(double x, double y, double r)

 void picture(double x, double y, String filename) place .gif, .jpg or .png file

 void setPenRadius(double r)

 void setPenColor(Color c)

 void setXscale(double x0, double x1) reset x range to [x0, x1)

 void setYscale(double y0, double y1) reset y range to [y0, y1)

 void show(int dt) show all; pause dt millisecs

also filledCircle(), filledSquare(),  
and filledPolygon()

“Hello, World” for StdDraw

31

public class Triangle

{

 public static void main(String[] args)

 {

 double c = Math.sqrt(3.0) / 2.0;

 StdDraw.setPenRadius(0.01);

 StdDraw.line(0.0, 0.0, 1.0, 0.0);

 StdDraw.line(1.0, 0.0, 0.5, c);

 StdDraw.line(0.5, c, 0.0, 0.0);

 StdDraw.point(0.5, c/3.0);

 StdDraw.text(0.5, 0.5, "Hello, World");

 }

}

Hello, World

(0.5, 0.866025...)

(0, 0) (1, 0)

Trace of drawing

“Hello, World” for StdDraw

32

public class Triangle

{

 public static void main(String[] args)

 {

 double c = Math.sqrt(3.0) / 2.0;

 StdDraw.setPenRadius(0.01);

 StdDraw.line(0.0, 0.0, 1.0, 0.0);

 StdDraw.line(1.0, 0.0, 0.5, c);

 StdDraw.line(0.5, c, 0.0, 0.0);

 StdDraw.point(0.5, c/3.0);

 StdDraw.text(0.5, 0.5, "Hello, World");

 }

}

%

% javac Triangle.java

% java Triangle

virtual terminal for editor

virtual terminal for OS commands

window for standard drawing

StdDraw application: data visualization

33

public class PlotFilter

{

 public static void main(String[] args)

 {

 double xmin = StdIn.readDouble();

 double ymin = StdIn.readDouble();

 double xmax = StdIn.readDouble();

 double ymax = StdIn.readDouble();

 StdDraw.setXscale(xmin, xmax);

 StdDraw.setYscale(ymin, ymax);

 while (!StdIn.isEmpty())

 {

 double x = StdIn.readDouble();

 double y = StdIn.readDouble();

 StdDraw.point(x, y);

 }

 }

}

% more < USA.txt

669905.0 247205.0 1244962.0 490000.0

 1097038.8890 245552.7780

 1103961.1110 247133.3330

 1104677.7780 247205.5560

 ...

% java PlotFilter < USA.txt

read coords of

bounding box

rescale

read and

plot a point

bounding box coords

sequence

of point

coordinates

(13,509 cities)

Lesson 2: Take a sufficiently

large sample—otherwise

you might miss something!

Goal. Plot in the interval .

StdDraw application: plotting a function

34

public class PlotFunctionEx

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 double[] x = new double[N+1];

 double[] y = new double[N+1];

 for (int i = 0; i <= N; i++) 
 {

 x[i] = Math.PI * i / N;

 y[i] = Math.sin(4*x[i]) + Math.sin(20*x[i]);

 }

 StdDraw.setXscale(0, Math.PI);

 StdDraw.setYscale(-2.0, +2.0);

 for (int i = 0; i < N; i++)

 StdDraw.line(x[i], y[i], x[i+1], y[i+1]);

 }

}

y = sin(4x) + sin(20x) (0, π)

Method. Take N samples, regularly spaced.

Lesson 1: Plotting is easy.

% java PlotFunctionEx 20

% java PlotFunctionEx 200

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.4.B.IO.Drawing

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

4. Input and Output

1.5

http://introcs.cs.princeton.edu

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

5. Functions and Libraries

2.1–2.2

http://introcs.cs.princeton.edu

5. Functions and Libraries

•Basic concepts

•Case study: Digital audio

•Application: Gaussian distribution

•Modular programming and libraries

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.5.A.Functions.Basics

functions and libraries

Context: basic building blocks for programming

39

any program you might want to write

objects

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types

conditionals and loops

functions and libraries

This lecture:

Reuse code to build big

programs from small pieces

40

Functions, libraries, and modules

Modular programming

• Organize programs as independent modules that do a job together.

• Why? Easier to share and reuse code to build bigger programs.

Def. A library is a set of functions.

for purposes of this lecture

Def. A module is a .java file.

for purposes of this course 

Facts of life

• Support of modular programming has been a holy grail for decades.

• Ideas can conflict and get highly technical in the real world.

For now. Libraries and modules are the same thing: .java files containing sets of functions.

Later. Modules implement data structures (stay tuned).

Functions (static methods)

Java function ("aka static method")

• Takes zero or more input arguments.

• Returns zero or one output value.

• May cause side effects (e.g., output to standard draw).

41

Applications

• Scientists use mathematical functions to calculate formulas.

• Programmers use functions to build modular programs.

• You use functions for both.

Examples seen so far

• Built-in functions: Math.random(), Math.abs(), Integer.parseInt().

• Our I/O libraries: StdIn.readInt(), StdDraw.line(), StdAudio.play().

• User-defined functions: main().

Java functions are more general than mathematical functions

input x

output f (x)

function f
side

effects

Anatomy of a Java static method

To implement a function (static method)

• Create a name.

• Declare type and name of argument(s).

• Specify type for return value.

• Implement body of method.

• Finish with return statement.

42

public static double sqrt(double c, double eps)

{

 if (c < 0) return Double.NaN;

 double t = c;

 while (Math.abs(t - c/t) > eps * t)

 t = (c/t + t) / 2.0;

 return t;

}

body of sqrt()

method

name

return statement

return

type

the method’s signature

argument declarations

Anatomy of a Java library

A library is a set of functions.

43

public class Newton

{

 public static double sqrt(double c, double eps)

 {

 if (c < 0) return Double.NaN;

 double t = c;

 while (Math.abs(t - c/t) > eps * t)

 t = (c/t + t) / 2.0;

 return t;

 }

 public static void main(String[] args)

 {

 double[] a = new double[args.length];

 for (int i = 0; i < args.length; i++)

 a[i] = Double.parseDouble(args[i]);

 for (int i = 0; i < a.length; i++)

 StdOut.println(sqrt(a[i], 1e-3));

 }

}

module named

Newton.java

sqrt() method

main() method

library/module name

Key point. Functions provide a new way to control the flow of execution.

Note: We are using our sqrt()

from earlier to illustrate the basics

with a familiar function.

Our focus is on control flow here.

See earlier slides for technical

details.

You can use Math.sqrt(). 

Scope

44

public class Newton

{

 public static double sqrt(double c, double eps)

 {

 if (c < 0) return Double.NaN;

 double t = c;

 while (Math.abs(t - c/t) > eps * t)

 t = (c/t + t) / 2.0;

 return t;

 }

 public static void main(String[] args)

 {

 double[] a = new double[args.length];

 for (int i = 0; i < args.length; i++)

 a[i] = Double.parseDouble(args[i]);

 for (int i = 0; i < a.length; i++)

 StdOut.println(sqrt(a[i], 1e-3));

 }

}

Def. The scope of a variable is the code that can refer to it by name.

Best practice. Declare variables so as to limit their scope.

scope of c and eps

In a Java library, a variable’s
scope is the code following its
declaration, in the same block.

scope of t

two different variables named i

each with scope limited to a

single for loop

scope of a

cannot refer to 
a or i in this code

cannot refer to 
c, eps, or t in this code

Flow of control

45

public class Newton

{

 public static double sqrt(double c, double eps)

 {

 if (c < 0) return Double.NaN;

 double t = c;

 while (Math.abs(t - c/t) > eps * t)

 t = (c/t + t) / 2.0;

 return t;

 }

 public static void main(String[] args)

 {

 double[] a = new double[args.length];

 for (int i = 0; i < args.length; i++)

 a[i] = Double.parseDouble(args[i]);

 for (int i = 0; i < a.length; i++)

 {

 double x = sqrt(a[i], 1e-3);

 StdOut.println(x);

 }

 }

}

Summary of flow control for a function call

• Control transfers to the function code.

• Argument variables are declared and
initialized with the given values.

• Function code is executed.

• Control transfers back to the calling code 
(with return value assigned in place of
the function name in the calling code).

“pass by value”

(other methods used in other systems)

Note. OS calls main() on java command

c t

1.0 1.0

c t

2.0 2.0

1.5

1.417

1.414

Function call flow of control trace

46

public class Newton

{

 public static double sqrt(double c, double eps)

 {

 if (c < 0) return Double.NaN;

 double t = c;

 while (Math.abs(t - c/t) > eps * t)

 t = (c/t + t) / 2.0;

 return t;

 }

 public static void main(String[] args)

 {

 double[] a = new double[args.length];

 for (int i = 0; i < args.length; i++)

 a[i] = Double.parseDouble(args[i]);

 for (int i = 0; i < a.length; i++)

 {

 double x = sqrt(a[i], 1e-3);

 StdOut.println(x);

 }

 }

}

% java Newton 1 2 3

1.000

1.414

1.732

i a[i]

0 1.0

1 2.0

2 3.0

c t

3.0 3.0

2.0

1.75

1.732

i a[i] x

0 1.0 1.000

1 2.0 1.414

2 3.0 1.732

3

Pop quiz 1a on functions

Q. What happens when you compile and run the following code?

47

public class PQfunctions1a

{

 public static int cube(int i)

 {

 int j = i * i * i;

 return j;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

Pop quiz 1a on functions

Q. What happens when you compile and run the following code?

48

public class PQfunctions1a

{

 public static int cube(int i)

 {

 int j = i * i * i;

 return j;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

A. Takes N from the command line, then 
 prints cubes of integers from 1 to N

% javac PQfunctions1a.java

% java PQfunctions1a 6

1 1

2 8

3 27

4 64

5 125

6 216

Pop quiz 1b on functions

Q. What happens when you compile and run the following code?

49

public class PQfunctions1b

{

 public static int cube(int i)

 {

 int i = i * i * i;

 return i;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

Pop quiz 1b on functions

Q. What happens when you compile and run the following code?

50

public class PQfunctions1b

{

 public static int cube(int i)

 {

 int i = i * i * i;

 return i;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

A. Won't compile. Argument variable i is
declared and initialized for function block,
so the name cannot be reused.

% javac PQfunctions1b.java

PQfunctions1b.java:5: i is already defined in cube(int)

 int i = i * i * i;

 ^

1 error

Pop quiz 1c on functions

Q. What happens when you compile and run the following code?

51

public class PQfunctions1c

{

 public static int cube(int i)

 {

 i = i * i * i;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

Pop quiz 1c on functions

Q. What happens when you compile and run the following code?

52

public class PQ6_1c

{

 public static int cube(int i)

 {

 i = i * i * i;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

A. Won't compile. Need return statement.

% javac PQfunctions1c.java

PQfunctions1c.java:6: missing return statement

 }

 ^

1 error

Pop quiz 1d on functions

Q. What happens when you compile and run the following code?

53

public class PQfunctions1d

{

 public static int cube(int i)

 {

 i = i * i * i;

 return i;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

Pop quiz 1d on functions

Q. What happens when you compile and run the following code?

54

public class PQfunctions1d

{

 public static int cube(int i)

 {

 i = i * i * i;

 return i;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

% javac PQfunctions1d.java

% java PQfunctions1d 6

1 1

2 8

3 27

4 64

5 125

6 216

A. Works. The i in cube() is

• Declared and initialized as an argument.

• Different from the i in main().

BUT changing values of function arguments is
sufficiently confusing to be deemed bad style
for this course.

Pop quiz 1e on functions

Q. What happens when you compile and run the following code?

55

public class PQfunctions1e

{

 public static int cube(int i)

 {

 return i * i * i;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

Pop quiz 1e on functions

Q. What happens when you compile and run the following code?

56

public class PQfunctions1e

{

 public static int cube(int i)

 {

 return i * i * i;

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++)

 StdOut.println(i + " " + cube(i));

 }

}

A. Works fine. Preferred (compact) code.

% javac PQfunctions1e.java

% java PQfunctions1e 6

1 1

2 8

3 27

4 64

5 125

6 216

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://upload.wikimedia.org/wikipedia/commons/b/ba/Working_Together_Teamwork_Puzzle_Concept.jpg

 http://pixabay.com/en/ball-puzzle-pieces-of-the-puzzle-72374/

 http://upload.wikimedia.org/wikipedia/commons/e/ef/Ben_Jigsaw_Puzzle_Puzzle_Puzzle.png

 http://en.wikipedia.org/wiki/Function_(mathematics)#mediaviewer/File:Function_machine2.svg

CS.5.A.Functions.Basics

5. Functions and Libraries

•Basic concepts

•Case study: Digital audio

•Application: Gaussian distribution

•Modular programming

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.5.D.Functions.Modular

59

Fundamental abstractions for modular programming

Implementation

Module containing

library's Java code.

Applications programming interface (API)

Defines signatures, describes methods.

Client

Module that calls a

library's methods.

public class GaussianPlot

{

 ...

 y[i] = Gaussian.pdf(x[i]);

 ...

}

public class Gaussian

 double pdf(double x) Gaussian probability
density function

 double cdf(double x) Gaussian cumulative
distribution function

public class Gaussian

{

 public static double pdf(double x)

 {

 double val = Math.exp(-x*x / 2);

 val /= Math.sqrt(2 * Math.PI);

 return val

 }

 ...

}

Client API Implementation

60

Example: StdRandom library

public class StdRandom

 int uniform(int N) integer between 0 and N-1

 double uniform(double lo, double hi) real between lo and hi

 boolean bernoulli(double p) true with probability p

 double gaussian() normal with mean 0, stddev 1

 double gaussian(double m, double s) normal with mean m, stddev s

 int discrete(double[] a) i with probability a[i]

 void shuffle(double[] a) randomly shuffle the array a[]

Developed for this course, but broadly useful

• Implement methods for generating random numbers of various types.

• Available for download at booksite (and included in introcs software).

First step in developing a library: Articulate the API!

API

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

61

StdRandom details

public class StdRandom

{

 public static double uniform(double a, double b)

 { return a + Math.random() * (b-a); }

 public static int uniform(int N)

 { return (int) (Math.random() * N); }

 public static boolean bernoulli(double p)

 { return Math.random() < p; }

 public static double gaussian()

 /* see Exercise 1.2.27 */

 public static double gaussian(double m, double s)

 { return mean + (stddev * gaussian()); }

 ...

}

Implementation

public class RandomPoints

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 0; i < N; i++)

 {

 double x = StdRandom.gaussian(0.5, 0.2);

 double y = StdRandom.gaussian(0.5, 0.2);

 StdDraw.point(x, y);

 }

 }

}

Typical client

% java RandomPoints 10000
You could implement many of these methods,

 but now you don't have to!

Best practices

62

Small modules

• Separate and classify small tasks.

• Implement a layer of abstraction.
public class StdRandom

{

 ...

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 for (int i = 0; i < N; i++) {

 StdOut.printf(" %2d " , uniform(100));

 StdOut.printf("%8.5f ", uniform(10.0, 99.0));

 StdOut.printf("%5b " , bernoulli(.5));

 StdOut.printf("%7.5f ", gaussian(9.0, .2));

 StdOut.println();

 }

 }

}

Independent development

• Code client before coding implementation.

• Anticipate needs of future clients.

Test clients

• Include main() test client in each module.

• Do more extensive testing in a separate module.

% java StdRandom 5

 61 21.76541 true 9.30910

 57 43.64327 false 9.42369

 31 30.86201 true 9.06366

 92 39.59314 true 9.00896

 36 28.27256 false 8.66800run all code at least once!

63

Example: StdStats library

public class StdStats

 double max(double[] a) largest value

 double min(double[] a) smallest value

 double mean(double[] a) average

 double var(double[] a) sample variance

 double stddev(double[] a) sample standard deviation

 double median(double[] a) plot points at (i, a[i])

 void plotPoints(double[] a) plot points at (i, a[i])

 void plotLines(double[] a) plot lines connecting points at (i, a[i])

 void plotBars(double[] a) plot bars to points at (i, a[i])

Developed for this course, but broadly useful

• Implement methods for computing statistics on arrays of real numbers.

• Available for download at booksite (and included in introcs software).

API

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

and plotting

on StdDraw

Easy to implement, but easier to use! one reason to develop a library: clarify client code

64

Example of modular programming: StdStats, StdRandom, and Gaussian client

Experiment

• Flip N coins.

• How many heads?

• Prediction: Expect N/2.

Prediction (more detailed)

• Run experiment trials times.

• How many heads?

Goal. Write a program to validate predictions.

public static int binomial(int N)

{

 int heads = 0;

 for (int j = 0; j < N; j++)

 if (StdRandom.bernoulli(0.5))

 heads++;

 return heads;

}

65

public class Bernoulli

{

 public static int binomial(int N)

 // See previous slide.

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 int trials = Integer.parseInt(args[1]);

 int[] freq = new int[N+1];

 for (int t = 0; t < trials; t++)

 freq[binomial(N)]++;

 double[] normalized = new double[N+1];

 for (int i = 0; i <= N; i++)

 normalized[i] = (double) freq[i] / trials;

 StdStats.plotBars(normalized);

 double mean = N / 2.0;

 double stddev = Math.sqrt(N) / 2.0;

 double[] phi = new double[N+1];

 for (int i = 0; i <= N; i++)

 phi[i] = Gaussian.pdf(i, mean, stddev);

 StdStats.plotLines(phi);

 }

}

Example of modular programming: Bernoulli trials

Bernoulli simulation

• Get command-line arguments 
(trials experiments of N flips).

• Run experiments. Keep track of
frequency of occurrence of each
return value.

• Normalize to between 0 and 1.
Plot histogram.

• Plot theoretical curve.

% java Bernoulli 20 10000

theory

experiments

Modular programming
enables development of complicated programs via simple independent modules.

66

Advantages. Code is easier to understand, debug, maintain, improve, and reuse.

StdRandom

Gaussian

Bernoulli

Math

exp()
sqrt()
PI

pdf()

sqrt()

uniform()

plotBars()
plotLines()

random()

parseInt()

readDouble1D()
readDouble2D()

IFS

StdArrayIO

StdIn

readDouble()
readInt()

point()

parseInt()

discrete()

StdStats

Integer

StdDraw

line()
setXscale()
setPenRadius()

For generating fractals

Why modular programming?

Modular programming enables

• Independent development of small programs.

• Every programmer to develop and share layers of abstraction.

• Self-documenting code.

67

Fundamental characteristics

• Separation of client from implementation benefits all future clients.

• Contract between implementation and clients (API) benefits all past clients.

Challenges

• How to break task into  
independent modules?

• How to specify API?
Client API Implementation

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://xkcd.com/221/

 http://upload.wikimedia.org/wikipedia/commons/b/ba/Working_Together_Teamwork_Puzzle_Concept.jpg

 http://upload.wikimedia.org/wikipedia/commons/e/ef/Ben_Jigsaw_Puzzle_Puzzle_Puzzle.png

CS.5.D.Functions.Modular

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

5. Functions and Libraries

2.1–2.2

http://introcs.cs.princeton.edu

Introduce HW3

Discuss collaboration policy

Discuss Gradescope

