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START RECORDING



Attendance Quiz: I/O and Functions

• Scan the QR code, or find today’s attendance 
quiz under the “Quizzes” tab on Canvas


• Password: to be announced in class


• After five minutes, we will discuss the answers



Attendance Quiz: I/O and Functions

• Write your name


• Translate the following pseudocode into a Java program, Bouncer.java

The bouncer should ask the user for their age. “What is your age? ”


The bouncer should use a rules() method to check whether the age meets the criteria for 
entry into the establishment. Based on the rules, the appropriate answer should be 
printed.


- Age less than 10: “Where are your parents?”

- Age less than 21: “Sorry, you can’t enter.”

- Age at least 21: “Welcome!”



Outline
• Attendance quiz


• Foundations


• A classic example


• Recursive graphics


• Avoiding exponential waste


• Dynamic programming
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6. Recursion

•Foundations

•A classic example

•Recursive graphics

•Avoiding exponential waste

•Dynamic programming
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Overview

8

Q. What is recursion?

A. When something is specified in terms of itself.

Why learn recursion?


• Represents a new mode of thinking.


• Provides a powerful programming paradigm.


• Enables reasoning about correctness.


• Gives insight into the nature of computation.

Many computational artifacts are naturally self-referential.


• File system with folders containing folders.


• Fractal graphical patterns.


• Divide-and-conquer algorithms (stay tuned).



Mathematical induction (quick review)
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To prove a statement involving a positive integer N


• Base case. Prove it for some specific values of N.


• Induction step. Assuming that the statement is true for all 
positive integers less than N, use that fact to prove it for N.

The sum of the first N odd integers is N 2.


Base case. True for N = 1.


Induction step. The N th odd integer is 2N − 1.

Let TN = 1 + 3 + 5 + ... + (2N − 1) be the sum of 
the first N odd integers.


• Assume that TN − 1 = (N − 1)2. 


• Then TN = (N − 1)2 + (2N − 1) = N2.

Example

1

3

5

7

9

An alternate proof



Example: Convert an integer to binary

10

public class Binary

{

   public static String convert(int N)

   {

      if (N == 1) return "1";

      return convert(N/2) + (N % 2);

   }

   public static void main(String[] args)

   {

      int N = Integer.parseInt(args[0]);

      StdOut.println(convert(N));

   }

}

% java Binary 6

110

% java Binary 37

100101

% java Binary  999999

11110100001000111111

Q. How can we be convinced that this method is correct?

A. Use mathematical induction.

To compute a function of a 
positive integer N


• Base case. Return a value for 
small N .


• Reduction step. Assuming 
that it works for smaller 
values of its argument, use 
the function to compute a 
return value for N.

Recursive program

int 0 or 1

automatically

converted to


String "0" or "1"



Proving a recursive program correct

To compute a function of N


• Base case. Return a value for small N .


• Reduction step. Assuming that it works for 
smaller values of its argument, use the 
function to compute a return value for N.

11

Recursion

To prove a statement involving N


• Base case. Prove it for small N.


• Induction step. Assuming that the 
statement is true for all positive integers 
less than N, use that fact to prove it for N.

Mathematical induction

convert() computes the binary representation of N


• Base case. Returns "1" for N = 1.


• Induction step. Assume that convert() works for N/2 

1. Correct to append "0" if N is even, since N = 2(N/2). 

 

2. Correct to append "1" if N is odd since N = 2(N/2) + 1. 

Correctness proof, by induction

public static String convert(int N)

{

   if (N == 1) return "1";

   return convert(N/2) + (N % 2);

}

Recursive program

N/2 N 0

N/2 N 1



Mechanics of a function call

System actions when any function is called


• Save environment (values of all variables and call location).


• Initialize values of argument variables.


• Transfer control to the function.


• Restore environment (and assign return value)


• Transfer control back to the calling code.

12

public class Binary

{

   public static String convert(int N)

   {

      if (N == 1) return "1";

      return convert(N/2) + (N % 2);

   }

   public static void main(String[] args)

   {

      int N = Integer.parseInt(args[0]);

      System.out.println(convert(N));

   }

}

% java Convert 26

11010

convert(26)

   if (N == 1) return "1";

   return convert(13) + "0";

convert(13)

   if (N == 1) return "1";

   return convert(6) + "1";

convert(6)

   if (N == 1) return "1";

   return convert(3) + "0";

convert(3)

   if (N == 1) return "1";

   return convert(1) + "1";

convert(1)

   if (N == 1) return "1";

   return convert(0) + "1";

"1"

"11"

"110"

"1101"



Programming with recursion: typical bugs

13

public static double bad(int N)

{

   if (N == 1) return 1.0;

   return bad(1 + N/2) + 1.0/N;

}

Try N = 2

No convergence
guarantee

public static double bad(int N)

{

   return bad(N-1) + 1.0/N;

}

Missing base case

On the CLI, stop 
them with 
Control+C

Both lead to infinite recursive loops (bad news).



7 22 11 34 17 52 26 13 49 20 ...
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Collatz Sequence

Collatz function of N.


• If N is 1, stop.


• If N is even, divide by 2.


• If N is odd, multiply by 3 and add 1.

public static void collatz(int N)

{

    StdOut.print(N + " ");

    if (N == 1) return;

    if (N % 2 == 0) collatz(N / 2);

    else collatz(3*N + 1);

}

Amazing fact. No one knows whether or not this function terminates for all N (!)

% java Collatz 7

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 

Note. We usually ensure termination by only making recursive calls for smaller N.
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Warmup:  subdivisions of a ruler (revisited)

ruler(n): create subdivisions of a ruler to 1/2n inches.


• Return one space for n = 0.


• Otherwise, sandwich n between two copies of ruler(n-1).

public class Ruler

{ 

   public static String ruler(int n)

   {

      if (n == 0) return " ";

      return ruler(n-1) + n + ruler(n-1);

   }

   public static void main(String[] args)

   { 

      int n = Integer.parseInt(args[0]);

      StdOut.println(ruler(n));

   }

}

250 − 1 integers in output.

% java Ruler 1

 1 


% java Ruler 2

 1 2 1 


% java Ruler 3

 1 2 1 3 1 2 1 

% java Ruler 4

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 

% java Ruler 50

Exception in thread "main" 
java.lang.OutOfMemoryError: 
Java heap space

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 



ruler(0)

ruler(1)

Tracing a recursive program

Use a recursive call tree


• One node for each recursive call.


• Label node with return value after children are labeled.

19

ruler(2)  1 2 1

1

⎵ ⎵ ⎵ ⎵

1

ruler(3)  1 2 1 3 1 2 1

ruler(4)  1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

⎵ ⎵

1

⎵ ⎵

1

 1 2 1

⎵ ⎵

1

⎵

1

 1 2 1

⎵ ⎵

1

⎵ ⎵

1

 1 2 1

 1 2 1 3 1 2 1

⎵



Towers of Hanoi puzzle

A legend of uncertain origin


• n = 64 discs of differing size; 3 posts; discs on one of the posts from largest to smallest.


• An ancient prophecy has commanded monks to move the discs to another post.


• When the task is completed, the world will end.

20

Rules


• Move discs one at a time.


• Never put a larger disc on a smaller disc.

Q. When might the world end ?

n = 10 

before

after

Q. Generate list of instruction for monks ?



Towers of Hanoi

A recursive solution


• Move n − 1 discs to the left (recursively).


• Move largest disc to the right.


• Move n − 1 discs to the left (recursively).

21

For simple instructions, use cyclic wraparound


• Move right means 


• Move left means

0 1 2

1 to 2, 2 to 3, or 3 to 1.

1 to 3, 3 to 2, or 2 to 1.

1 2 3



Towers of Hanoi solution (n = 3)
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1R

1R

2L

2L

1R

1R

3R

3R

1R

1R

2L 2L1R

1R
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Towers of Hanoi: recursive solution

hanoi(n): Print moves for n discs.


• Return one space for n = 0.


• Otherwise, set  move to the specified move for disc n.


• Then sandwich move between two copies of hanoi(n-1).

public class Hanoi

{

   public static String hanoi(int n, boolean left)

   {

      if (n == 0) return " ";

      String move;

      if (left) move = n + "L";

      else      move = n + "R";

      return hanoi(n-1, !left) + move + hanoi(n-1, !left);

   }

   

   public static void main(String[] args)

   {

      int n = Integer.parseInt(args[0]);

      StdOut.println(hanoi(n, false));

   }

}

% java Hanoi 3

 1R 2L 1R 3R 1R 2L 1R 



hanoi(0, true)

hanoi(1, false)

Recursive call tree for towers of Hanoi

Structure is the same as for the ruler function and suggests 3 useful and easy-to-prove facts.


• Each disc always moves in the same direction.


• Moving smaller disc always alternates with a unique legal move.


• Moving n discs requires 2n − 1 moves.

24

hanoi(2, true)

 1 2 1

 R L R

1

R

⎵ ⎵ ⎵ ⎵

1

R

hanoi(3, false)

 1 2 1 3 1 2 1

 R L R R R L R

hanoi(4, true)

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

 R L R R R L R L R L R R R L R

⎵ ⎵

1

R

⎵ ⎵

1

R

 1 2 1

 R L R

⎵ ⎵

1

R

⎵

1

R

 1 2 1

 R L R

⎵ ⎵

1

R

⎵ ⎵

1

R

 1 2 1

 R L R

 1 2 1 3 1 2 1

 R L R R R L R

⎵



Answers for towers of Hanoi

25

Q. When might the world end ?

Q. Generate list of instructions for monks ?

A. Not soon: need 264 − 1 moves.

moves per second end of world

1 5.84 billion centuries

1 billion 5.84 centuries

A. (Long form). 1L 2R 1L 3L 1L 2R 1L 4R 1L 2R 1L 3L 1L 2R 1L 5L 1L 2R 1L 3L 1L 2R 1L 4R ...

A. (Short form). Alternate "1L" with the only legal move not involving the disc 1.

Note: Recursive solution has been proven optimal.

"L" or "R" depends on whether n is odd or even 
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Recursive graphics in the wild

28



"Hello, World" of recursive graphics: H-trees

H-tree of order n


• If n is 0, do nothing.


• Draw an H, centered.


• Draw four H-trees of order n −1 and half the size, centered at the tips of the H. 

29

order 1 order 2 order 3



order 1order 2order 3order 4order 5order 6

H-trees

30

Application. Connect 
a large set of 
regularly spaced sites 
to a single source.



31

Recursive H-tree implementation

public class Htree

{

   public static void draw(int n, double sz, double x, double y)

   {

      if (n == 0) return;

      double x0 = x - sz/2, x1 = x + sz/2;

      double y0 = y - sz/2, y1 = y + sz/2;

      StdDraw.line(x0,  y, x1,  y);

      StdDraw.line(x0, y0, x0, y1);

      StdDraw.line(x1, y0, x1, y1);

      draw(n-1, sz/2, x0, y0);      

      draw(n-1, sz/2, x0, y1);      

      draw(n-1, sz/2, x1, y0);      

      draw(n-1, sz/2, x1, y1);

   }

   public static void main(String[] args)

   {

      int n = Integer.parseInt(args[0]);

      draw(n, .5, .5, .5);

   }

}

draw the H,

centered on (x, y )

draw four

half-size H-trees

y

y 0

y 1

x0 x1x

sz

% java Htree 3
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Deluxe H-tree implementation

public class HtreeDeluxe

{

   public static void draw(int n, double sz,

                              double x, double y)

   {

      if (n == 0) return;

      double x0 = x - sz/2, x1 = x + sz/2;

      double y0 = y - sz/2, y1 = y + sz/2;

      StdDraw.line(x0,  y, x1,  y);

      StdDraw.line(x0, y0, x0, y1);

      StdDraw.line(x1, y0, x1, y1);

      StdAudio.play(PlayThatNote.note(n, .25*n));

      draw(n-1, sz/2, x0, y0);      

      draw(n-1, sz/2, x0, y1);      

      draw(n-1, sz/2, x1, y0);      

      draw(n-1, sz/2, x1, y1);

   }

   public static void main(String[] args)

   {

      int n = Integer.parseInt(args[0]);

      draw(n, .5, .5, .5);

   }

}

% java HtreeDeluxe 4

Note. Order in which Hs are drawn is instructive.
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Fractional Brownian motion

A process that models many phenomenon.


• Price of stocks.


• Dispersion of fluids.


• Rugged shapes of mountains and clouds.


• Shape of nerve membranes.

. . .

Price of an actual stock

Black-Scholes model (two different parameters)

Brownian bridge model

An actual mountain
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Fractional Brownian motion simulation

Midpoint displacement method


• Consider a line segment from (x0, y0) to (x1, y1).


• If sufficiently short draw it and return. Otherwise:


• Divide the line segment in half, at (xm, ym).


• Choose δ at random from Gaussian distribution.


• Add δ to ym.


• Recur on the left and right line segments.

(xm, ym )

(x0, y0)

(x1, y1)

(xm, ym  + δ)

δ
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Brownian motion implementation

public class Brownian

{

   public static void 
   curve(double x0, double y0, double x1, double y1,

                               double var, double s)

   {

      if (x1 - x0 < .01)

      {  StdDraw.line(x0, y0, x1, y1); return;  }

	  double xm = (x0 + x1) / 2;

	  double ym = (y0 + y1) / 2;

      double stddev = Math.sqrt(var);

	  double delta = StdRandom.gaussian(0, stddev);

	  curve(x0, y0, xm, ym+delta, var/s, s);

	  curve(xm, ym+delta, x1, y1, var/s, s);

   }


   public static void main(String[] args)

   {

      double hurst = Double.parseDouble(args[0]);

	  double s = Math.pow(2, 2*hurst);

      curve(0, .5, 1.0, .5, .01, s);

   }

}

% java Brownian 1

% java Brownian .125

control parameter

(see text)
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A 2D Brownian model: plasma clouds

Midpoint displacement method


• Consider a rectangle centered at (x, y) with pixels at the four corners.


• If the rectangle is small, do nothing. Otherwise:


• Color the midpoints of each side the average of the endpoint colors.


• Choose δ at random from Gaussian distribution.


• Color the center pixel the average of the four corner colors plus δ


• Recurse on the four quadrants.

0

60

20

100

10

6030

80

49

Booksite code actually

draws a rectangle to


avoid artifacts
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A Brownian cloud
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A Brownian landscape
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START RECORDING



Attendance Quiz



• Scan the QR code, or find today’s 
attendance quiz under the “Quizzes” tab 
on Canvas


• Password: to be announced in class


• After five minutes, we will discuss the 
answers

Attendance Quiz: Recursion

Let Fn = Fn−1 + Fn−2 for n > 1 with F0 = 0 and F1 = 1.

Note that the Fibonacci sequence is defined as:

n 0 1 2 3 4 5 6 7
Fn 0 1 1 2 3 5 8 13

For example:



Attendance Quiz: Recursion

• Write your name


• Complete the following Java 
program, FibonacciR.java


• Briefly explain why this naïve 
implementation will be slow, and 
how it can be improved.

public class FibonacciR

{

   public static long F(int n)

   {

     # YOUR CODE GOES HERE

   }

   public static void main(String[] args)

   {

      int n = Integer.parseInt(args[0]);

      StdOut.println(F(n));

   }

}

Let Fn = Fn−1 + Fn−2 for n > 1 with F0 = 0 and F1 = 1.

Note that the Fibonacci sequence is defined as:

n 0 1 2 3 4 5 6 7
Fn 0 1 1 2 3 5 8 13

For example:
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Fibonacci numbers

Let Fn = Fn−1 + Fn−2 for n > 1 with F0 = 0 and F1 = 1.

45

Examples.


• Model for reproducing rabbits.


• Nautilus shell.


• Mona Lisa.


• ...

Models many natural phenomena and is widely found in art and architecture.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 ...

Facts (known for centuries).


• Fn / Fn−1 ➛ Φ = 1.618... as n ➛ ∞ 


• Fn is the closest integer to Φn/√5

Leonardo Fibonacci

c. 1170 – c. 1250

golden ratio Fn / Fn−1

21

21 13

13

8



Fibonacci numbers and the golden ratio in the wild
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1

1  1


1  2  1

1  3  3  1


1  4  6  4  1

1  5  10 10 5  1


1  6  15 20 15 6  1

1  7  21 35 35 21 7  1


1

1

2

3

5

8

13

21



Computing Fibonacci numbers
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Q. [Curious individual.] What is the exact value of F60 ?

A. [Novice programmer.] Just a second. I'll write a recursive program to compute it.

public class FibonacciR

{

   public static long F(int n)

   {

      if (n == 0) return 0;

      if (n == 1) return 1;

      return F(n-1) + F(n-2);

   }

   public static void main(String[] args)

   {

      int n = Integer.parseInt(args[0]);

      StdOut.println(F(n));

   }

}

% java FibonacciR 5

5

% java FibonacciR 6

8

% java FibonacciR 10

55

% java FibonacciR 12

144

% java FibonacciR 50

12586269025

% java FibonacciR 60

takes a few minutes

Hmmm. Why is that?

Is something wrong with my computer?



Recursive call tree for Fibonacci numbers
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1

1 1F(1)

F(2)

F(3) 2

1

1

0

1

F(4)
3

F(5) 5

1

0

1

F(0)

2

0

2

1

1

0

1

3

1

0

1

8
F(6)



F(58)

F(57)

F(56)

F(55)

Exponentially wasteful to recompute all these values.

( trillions of calls on F(0), not to mention calls on F(1), F(2),...)

Exponential waste

49

Let Cn be the number of times F(n) is called when computing F(60).

n Cn

60 1 F1

59 1 F2

58 2 F3

57 3 F4

56 5 F5

55 8 F6

... ...

0 >2.5×1012 F61

F(60)

F(59)

F(58)

F(57)



Exponential waste dwarfs progress in technology

If you engage in exponential waste, you will not be able to solve a large problem.

50

n time to compute Fn

50 minutes

60 hours

70 weeks

80 years

90 centuries

100 millenia

VAX 11/780

1970s
n time to compute Fn

30 minutes

40 hours

50 weeks

60 years

70 centuries

80 millenia

2010s: 10,000+ times faster

Macbook Air

2010s: "That program won't compute F80 before you graduate! "

1970s: "That program won't compute F60 before you graduate! "



Avoiding exponential waste
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Memoization


• Maintain an array memo[] to 
remember all computed values.


• If value known, just return it.


• Otherwise, compute it, remember 
it, and then return it.

public class FibonacciM

{

   static long[] memo = new long[100];

   public static long F(int n)

   {

      if (n == 0) return 0;

      if (n == 1) return 1;

      if (memo[n] == 0)

         memo[n] = F(n-1) + F(n-2);

      return memo[n];

   }

   public static void main(String[] args)

   {

      int n = Integer.parseInt(args[0]);

      StdOut.println(F(n));

   }

}

% java FibonacciM 50

12586269025

% java FibonacciM 60

1548008755920

% java FibonacciM 80

23416728348467685

Simple example of dynamic programming (next).
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  http://www.inspirationgreen.com/fibonacci-sequence-in-nature.html


  http://www.goldenmeancalipers.com/wp-content/uploads/2011/08/mona_spiral-1000x570.jpg
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An alternative to recursion that avoids recomputation

Dynamic programming.


• Build computation from the "bottom up".


• Solve small subproblems and save solutions.


• Use those solutions to build bigger solutions.

54
Key advantage over recursive solution. Each subproblem is addressed only once.

Fibonacci numbers public class Fibonacci

{

   public static void main(String[] args)

   {

      int n = Integer.parseInt(args[0]);

      long[] F =	new long[n+1];

      F[0] = 0; F[1] = 1;

      for (int i = 2; i <= n; i++)

         F[i] = F[i-1] + F[i-2];

      StdOut.println(F[n]);

   }

}

% java Fibonacci 50

12586269025

% java Fibonacci 60

1548008755920

% java Fibonacci 80

23416728348467685

Richard Bellman

1920-1984



DP example: Longest common subsequence
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Def. A subsequence of a string s is any string formed by deleting characters from s.

s = ggcaccacg


    cac


    gcaacg


    ggcaacg


    ggcacacg


    ...


[2n subsequences in a  string of length n]

Goal. Efficient algorithm to compute the LCS and/or its length

t = acggcggatacg


    gacg


    ggggg


    cggcgg


    ggcaacg


    ggggaacg


    ...

Ex 1. Ex 2. 

ggcaccacg


ggcaccacg


ggcaccacg


ggcaccacg

Def. The LCS of s and t is the longest string that is a subsequence of both.

longest common subsequence

acggcggatacg


acggcggatacg


acggcggatacg


acggcggatacg


acggcggatacg


numerous scientific applications



Longest common subsequence
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Approach. Keep track of the length of the LCS of s[i..M) and t[j..N) in opt[i, j]

Goal. Efficient algorithm to compute the length of the LCS of two strings s and t.

Three cases:


•  i = M or j = N 
    opt[i][j] = 0  


• s[i] = t[j] 
    opt[i][j] = opt[i+1, j+1] + 1 


• otherwise 
    opt[i][j] = max(opt[i, j+1], opt[i+1][j])

s[6..9)  = acg


t[7..12) = atacg 


LCS(cg, tacg) = cg


LCS(acg, atacg) = acg

Ex: i = 6, j = 7 

s[6..9)  = acg


t[4..12) = cggatacg 


LCS(acg, ggatacg) = acg


LCS(cg, cggatacg) = cg


LCS(acg, cggatacg) = acg 

Ex: i = 6, j = 4 

t = acggcggatacgs = ggcaccacg



LCS example
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       0  1  2  3  4  5  6  7  8  9 10 11 12


       a  c  g  g  c  g  g  a  t  a  c  g 


0 g    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


1 g    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


2 c    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


3 a    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


4 c    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


5 c    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


6 a    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


7 c    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


8 g    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


9      0  0  0  0  0  0  0  0  0  0  0  0  0

String t, indexed by j

String s, 
indexed 

by i

First case:


•  i = M or j = N 
    opt[i][j] = 0



LCS example
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       0  1  2  3  4  5  6  7  8  9 10 11 12


       a  c  g  g  c  g  g  a  t  a  c  g 


0 g    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


1 g    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


2 c    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


3 a    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


4 c    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


5 c    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


6 a    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


7 c    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  0  


8 g    ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  1  0  


9      0  0  0  0  0  0  0  0  0  0  0  0  0

String t, indexed by j

String s, 
indexed 

by i

opt[i][j] = opt[i+1, j+1] + 1



LCS example
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       0  1  2  3  4  5  6  7  8  9 10 11 12


       a  c  g  g  c  g  g  a  t  a  c  g 


0 g    7  7  7  6  6  6  5  4  3  3  2  1  0  


1 g    6  6  6  6  5  5  5  4  3  3  2  1  0


2 c    6  5  5  5  5  4  4  4  3  3  2  1  0  


3 a    6  5  4  4  4  4  4  4  3  3  2  1  0  


4 c    5  5  4  4  4  3  3  3  3  3  2  1  0  


5 c    4  4  4  4  4  3  3  3  3  3  2  1  0  


6 a    3  3  3  3  3  3  3  3  3  3  2  1  0  


7 c    2  2  2  2  2  2  2  2  2  2  2  1  0  


8 g    1  1  1  1  1  1  1  1  1  1  1  1  0  


9      0  0  0  0  0  0  0  0  0  0  0  0  0

opt[i][j] = opt[i+1, j+1] + 1

opt[i][j] = max(opt[i, j+1], opt[i+1][j])

String t, indexed by j

String s, 
indexed 

by i



LCS length implementation
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Exercise. Add code to print LCS itself (see LCS.java on booksite for solution).

public class LCS

{

    public static void main(String[] args)

    {

        String s = args[0];

        String t = args[1];

        int M = s.length();

        int N = t.length();


        int[][] opt = new int[M+1][N+1];


        for (int i = M-1; i >= 0; i--) 

            for (int j = N-1; j >= 0; j--) 

                if (s.charAt(i) == t.charAt(j))

                    opt[i][j] = opt[i+1][j+1] + 1;

                else 

                    opt[i][j] = Math.max(opt[i+1][j], opt[i][j+1]);


        System.out.println(opt[0][0]);

    }

}

% java LCS ggcaccacg acggcggatacg  

7
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Dynamic programming and recursion

Broadly useful approaches to solving problems by combining solutions to smaller subproblems.

Why learn DP and recursion?


• Represent a new mode of thinking.


• Provide powerful programming paradigms.


• Give insight into the nature of computation.


• Successfully used for decades.

recursion dynamic programming

advantages
Decomposition often obvious.


Easy to reason about correctness.
Avoids exponential waste.


Often simpler than memoization.

pitfalls
Potential for exponential waste.


Decomposition may not be simple.

Uses significant space.

Not suited for real-valued arguments.


Challenging to determine order of computation
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  http://upload.wikimedia.org/wikipedia/en/7/7a/Richard_Ernest_Bellman.jpg
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R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,  
they also are masters of exposition. I am sure that every serious computer scientist 

will !nd this book rewarding in many ways.     
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing  
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to 
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary 
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer 
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data 
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for 
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and 
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, 
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of 
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code 
n An all-new chapter introducing analytic combinatorics 
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them 
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of 
Computer Programming books—and provide the background they need to keep abreast of new research. 

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University, 
where was founding chair of the computer science department and has been a member of the faculty since 
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and  
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick 
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created  
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis 
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics; 
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over 
the world. Dr. Flajolet was a member of the French Academy of Sciences. 
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Coin Changing



Coin Changing: Greedy Algorithm

How to make 90 cents?



Coin Changing: Greedy Solution

Optimal!     



Coin Changing: Greedy Solution



Coin Changing: Greedy Solution



Stamps:  greedy  != optimal

●Denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500

●How to make 140?
– Optimal Solution? Greedy Solution?



Cashier's Algorithm
• Repeatedly:


• Add coin of the largest value that does not take us past the amount to be 
paid


• This is a greedy algorithm


• Assume we have coins worth:


• 100¢, 25¢, 10¢, 5¢, 1¢


• Is this greedy algorithm optimal (i.e., does it use the fewest number of coins)?





4 pennies

4P + 1 nickel

4P + 2 dimes

3Q + 4P + 2D



General Coin Changing Algorithm
• So, the greedy cashier's algorithm works…


• …if we assume we have coins worth:


• 100¢, 25¢, 10¢, 5¢, 1¢


• But as in the postage stamp example, with different coin values, a greedy 
algorithm may not be optimal


• Is there an algorithm that works, for any set of coin/stamp values? 


• Yes, as we will see next!



General Coin Changing Algorithm: Recursion
• We can reduce the problem recursively by choosing the first coin, and solving for the 

amount that is left


• For a target value x (e.g., x = 99¢), and the coin set with denominations 
{d1, d2, …, dn}


• Choose the best solution from:


• One d1 coin plus the best solution for (x - d1)


• One d2 coin plus the best solution for (x - d2)


• …


• One dn coin plus the best solution for (x - dn)


• If di > x, we say that it takes ∞ coins to make change, to indicate that it's impossible


• However… this algorithm is inefficient, because overlapping subproblems are solved 
repeatedly



General Coin Changing Algorithm 
– Dynamic Programming

●Key Idea: Solve the problem first for one cent, then two cents, then three 
cents, etc., up to the desired amount
●Save each answer along the way !

●For each new amount N, compute all the possible pairs of previous 
answers which sum to N
●For example, to find the solution for 13¢,
●First, solve for all of 1¢, 2¢, 3¢, ..., 12¢
●Next, choose the best solution among:
●Solution for 1¢   +   solution for 12¢
●Solution for 2¢   +   solution for 11¢
●Solution for 3¢   +   solution for 10¢
●Solution for 4¢   +   solution for 9¢
●Solution for 5¢   +   solution for 8¢
●Solution for 6¢   +   solution for 7¢

●This is great! How to manage this process in general?



Dynamic Programming (DP)
●Powerful technique for optimization problems with

– Optimal sub-structure: optimal solution to a larger problem 
contains the optimal solutions to smaller ones

– Overlapping sub-problems

●General process for developing a DP solution
– Define sub-problems
– Identify recurrence relations among sub-problems
– Find a good order to solve the sub-problems, save their 

solutions, and finally solve the original problem
● Top-down recursion with memoization: larger problems → 

related smaller problems
● Bottom-up iteration: smaller problems → larger problems



Making Change

Given a new coin i, what’s the fewest coins required to make j in change?

Amount 0 1 2 3 4 5 6 7

senum=1 0 1 2 3 4 5 6 7

seon=2

shum=4

limnah=7

c[i,j] = min. number of “coins” to make j change with coins 1..i

The original problem is C[n,x], at the bottom right corner of the table

j

i

use coin iskip coin i



Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2

shum=4

limnah=7

c[i,j] = min. number of coins to make j change with coins 1..i.

j

i



Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 ???

shum=4

limnah=7

How does one compute c[2,2]?

j

i



Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1

shum=4

limnah=7

How does one compute c[2,2]?

j

i

+1



Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1 2

shum=4

limnah=7

How does one compute c[2,3]?

j

i

+1



Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1 2 2

shum=4

limnah=7

j

i

+1



Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1 2 2 3

shum=4

limnah=7

j

i

+1



Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1 2 2 3 3 4

shum=4 0 1 1 2 1 2 2 3

limnah=7 0 1 1 2 1 2 2 1

j

i


