
Recursion
CS 121: Data Structures

START RECORDING

Attendance Quiz: I/O and Functions

• Scan the QR code, or find today’s attendance
quiz under the “Quizzes” tab on Canvas

• Password: to be announced in class

• After five minutes, we will discuss the answers

Attendance Quiz: I/O and Functions

• Write your name

• Translate the following pseudocode into a Java program, Bouncer.java

The bouncer should ask the user for their age. “What is your age? ”

The bouncer should use a rules() method to check whether the age meets the criteria for
entry into the establishment. Based on the rules, the appropriate answer should be
printed.

- Age less than 10: “Where are your parents?”

- Age less than 21: “Sorry, you can’t enter.”

- Age at least 21: “Welcome!”

Outline
• Attendance quiz

• Foundations

• A classic example

• Recursive graphics

• Avoiding exponential waste

• Dynamic programming

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

6. Recursion

Section 2.3

http://introcs.cs.princeton.edu

6. Recursion

•Foundations

•A classic example

•Recursive graphics

•Avoiding exponential waste

•Dynamic programming

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.6.A.Recursion.Foundations

Overview

8

Q. What is recursion?

A. When something is specified in terms of itself.

Why learn recursion?

• Represents a new mode of thinking.

• Provides a powerful programming paradigm.

• Enables reasoning about correctness.

• Gives insight into the nature of computation.

Many computational artifacts are naturally self-referential.

• File system with folders containing folders.

• Fractal graphical patterns.

• Divide-and-conquer algorithms (stay tuned).

Mathematical induction (quick review)

9

To prove a statement involving a positive integer N

• Base case. Prove it for some specific values of N.

• Induction step. Assuming that the statement is true for all
positive integers less than N, use that fact to prove it for N.

The sum of the first N odd integers is N 2.

Base case. True for N = 1.

Induction step. The N th odd integer is 2N − 1.

Let TN = 1 + 3 + 5 + ... + (2N − 1) be the sum of
the first N odd integers.

• Assume that TN − 1 = (N − 1)2.

• Then TN = (N − 1)2 + (2N − 1) = N2.

Example

1

3

5

7

9

An alternate proof

Example: Convert an integer to binary

10

public class Binary

{

 public static String convert(int N)

 {

 if (N == 1) return "1";

 return convert(N/2) + (N % 2);

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 StdOut.println(convert(N));

 }

}

% java Binary 6

110

% java Binary 37

100101

% java Binary 999999

11110100001000111111

Q. How can we be convinced that this method is correct?

A. Use mathematical induction.

To compute a function of a
positive integer N

• Base case. Return a value for
small N .

• Reduction step. Assuming
that it works for smaller
values of its argument, use
the function to compute a
return value for N.

Recursive program

int 0 or 1

automatically

converted to

String "0" or "1"

Proving a recursive program correct

To compute a function of N

• Base case. Return a value for small N .

• Reduction step. Assuming that it works for
smaller values of its argument, use the
function to compute a return value for N.

11

Recursion

To prove a statement involving N

• Base case. Prove it for small N.

• Induction step. Assuming that the
statement is true for all positive integers
less than N, use that fact to prove it for N.

Mathematical induction

convert() computes the binary representation of N

• Base case. Returns "1" for N = 1.

• Induction step. Assume that convert() works for N/2 

1. Correct to append "0" if N is even, since N = 2(N/2). 

 

2. Correct to append "1" if N is odd since N = 2(N/2) + 1. 

Correctness proof, by induction

public static String convert(int N)

{

 if (N == 1) return "1";

 return convert(N/2) + (N % 2);

}

Recursive program

N/2 N 0

N/2 N 1

Mechanics of a function call

System actions when any function is called

• Save environment (values of all variables and call location).

• Initialize values of argument variables.

• Transfer control to the function.

• Restore environment (and assign return value)

• Transfer control back to the calling code.

12

public class Binary

{

 public static String convert(int N)

 {

 if (N == 1) return "1";

 return convert(N/2) + (N % 2);

 }

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 System.out.println(convert(N));

 }

}

% java Convert 26

11010

convert(26)

 if (N == 1) return "1";

 return convert(13) + "0";

convert(13)

 if (N == 1) return "1";

 return convert(6) + "1";

convert(6)

 if (N == 1) return "1";

 return convert(3) + "0";

convert(3)

 if (N == 1) return "1";

 return convert(1) + "1";

convert(1)

 if (N == 1) return "1";

 return convert(0) + "1";

"1"

"11"

"110"

"1101"

Programming with recursion: typical bugs

13

public static double bad(int N)

{

 if (N == 1) return 1.0;

 return bad(1 + N/2) + 1.0/N;

}

Try N = 2

No convergence
guarantee

public static double bad(int N)

{

 return bad(N-1) + 1.0/N;

}

Missing base case

On the CLI, stop
them with
Control+C

Both lead to infinite recursive loops (bad news).

7 22 11 34 17 52 26 13 49 20 ...

14

Collatz Sequence

Collatz function of N.

• If N is 1, stop.

• If N is even, divide by 2.

• If N is odd, multiply by 3 and add 1.

public static void collatz(int N)

{

 StdOut.print(N + " ");

 if (N == 1) return;

 if (N % 2 == 0) collatz(N / 2);

 else collatz(3*N + 1);

}

Amazing fact. No one knows whether or not this function terminates for all N (!)

% java Collatz 7

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Note. We usually ensure termination by only making recursive calls for smaller N.

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://xkcd.com/710/

CS.6.A.Recursion.Foundations

6. Recursion

•Foundations

•A classic example

•Recursive graphics

•Avoiding exponential waste

•Dynamic programming

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.6.B.Recursion.Hanoi

18

Warmup: subdivisions of a ruler (revisited)

ruler(n): create subdivisions of a ruler to 1/2n inches.

• Return one space for n = 0.

• Otherwise, sandwich n between two copies of ruler(n-1).

public class Ruler

{

 public static String ruler(int n)

 {

 if (n == 0) return " ";

 return ruler(n-1) + n + ruler(n-1);

 }

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 StdOut.println(ruler(n));

 }

}

250 − 1 integers in output.

% java Ruler 1

 1

% java Ruler 2

 1 2 1

% java Ruler 3

 1 2 1 3 1 2 1

% java Ruler 4

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java Ruler 50

Exception in thread "main"
java.lang.OutOfMemoryError:
Java heap space

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

ruler(0)

ruler(1)

Tracing a recursive program

Use a recursive call tree

• One node for each recursive call.

• Label node with return value after children are labeled.

19

ruler(2) 1 2 1

1

⎵ ⎵ ⎵ ⎵

1

ruler(3) 1 2 1 3 1 2 1

ruler(4) 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

⎵ ⎵

1

⎵ ⎵

1

 1 2 1

⎵ ⎵

1

⎵

1

 1 2 1

⎵ ⎵

1

⎵ ⎵

1

 1 2 1

 1 2 1 3 1 2 1

⎵

Towers of Hanoi puzzle

A legend of uncertain origin

• n = 64 discs of differing size; 3 posts; discs on one of the posts from largest to smallest.

• An ancient prophecy has commanded monks to move the discs to another post.

• When the task is completed, the world will end.

20

Rules

• Move discs one at a time.

• Never put a larger disc on a smaller disc.

Q. When might the world end ?

n = 10

before

after

Q. Generate list of instruction for monks ?

Towers of Hanoi

A recursive solution

• Move n − 1 discs to the left (recursively).

• Move largest disc to the right.

• Move n − 1 discs to the left (recursively).

21

For simple instructions, use cyclic wraparound

• Move right means

• Move left means

0 1 2

1 to 2, 2 to 3, or 3 to 1.

1 to 3, 3 to 2, or 2 to 1.

1 2 3

Towers of Hanoi solution (n = 3)

22

1R

1R

2L

2L

1R

1R

3R

3R

1R

1R

2L 2L1R

1R

23

Towers of Hanoi: recursive solution

hanoi(n): Print moves for n discs.

• Return one space for n = 0.

• Otherwise, set move to the specified move for disc n.

• Then sandwich move between two copies of hanoi(n-1).

public class Hanoi

{

 public static String hanoi(int n, boolean left)

 {

 if (n == 0) return " ";

 String move;

 if (left) move = n + "L";

 else move = n + "R";

 return hanoi(n-1, !left) + move + hanoi(n-1, !left);

 }

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 StdOut.println(hanoi(n, false));

 }

}

% java Hanoi 3

 1R 2L 1R 3R 1R 2L 1R

hanoi(0, true)

hanoi(1, false)

Recursive call tree for towers of Hanoi

Structure is the same as for the ruler function and suggests 3 useful and easy-to-prove facts.

• Each disc always moves in the same direction.

• Moving smaller disc always alternates with a unique legal move.

• Moving n discs requires 2n − 1 moves.

24

hanoi(2, true)

 1 2 1

 R L R

1

R

⎵ ⎵ ⎵ ⎵

1

R

hanoi(3, false)

 1 2 1 3 1 2 1

 R L R R R L R

hanoi(4, true)

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

 R L R R R L R L R L R R R L R

⎵ ⎵

1

R

⎵ ⎵

1

R

 1 2 1

 R L R

⎵ ⎵

1

R

⎵

1

R

 1 2 1

 R L R

⎵ ⎵

1

R

⎵ ⎵

1

R

 1 2 1

 R L R

 1 2 1 3 1 2 1

 R L R R R L R

⎵

Answers for towers of Hanoi

25

Q. When might the world end ?

Q. Generate list of instructions for monks ?

A. Not soon: need 264 − 1 moves.

moves per second end of world

1 5.84 billion centuries

1 billion 5.84 centuries

A. (Long form). 1L 2R 1L 3L 1L 2R 1L 4R 1L 2R 1L 3L 1L 2R 1L 5L 1L 2R 1L 3L 1L 2R 1L 4R ...

A. (Short form). Alternate "1L" with the only legal move not involving the disc 1.

Note: Recursive solution has been proven optimal.

"L" or "R" depends on whether n is odd or even

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.6.B.Recursion.Hanoi

6. Recursion

•Foundations

•A classic example

•Recursive graphics

•Avoiding exponential waste

•Dynamic programming

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.6.C.Recursion.Graphics

Recursive graphics in the wild

28

"Hello, World" of recursive graphics: H-trees

H-tree of order n

• If n is 0, do nothing.

• Draw an H, centered.

• Draw four H-trees of order n −1 and half the size, centered at the tips of the H.

29

order 1 order 2 order 3

order 1order 2order 3order 4order 5order 6

H-trees

30

Application. Connect
a large set of
regularly spaced sites
to a single source.

31

Recursive H-tree implementation

public class Htree

{

 public static void draw(int n, double sz, double x, double y)

 {

 if (n == 0) return;

 double x0 = x - sz/2, x1 = x + sz/2;

 double y0 = y - sz/2, y1 = y + sz/2;

 StdDraw.line(x0, y, x1, y);

 StdDraw.line(x0, y0, x0, y1);

 StdDraw.line(x1, y0, x1, y1);

 draw(n-1, sz/2, x0, y0);

 draw(n-1, sz/2, x0, y1);

 draw(n-1, sz/2, x1, y0);

 draw(n-1, sz/2, x1, y1);

 }

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 draw(n, .5, .5, .5);

 }

}

draw the H,

centered on (x, y)

draw four

half-size H-trees

y

y 0

y 1

x0 x1x

sz

% java Htree 3

32

Deluxe H-tree implementation

public class HtreeDeluxe

{

 public static void draw(int n, double sz,

 double x, double y)

 {

 if (n == 0) return;

 double x0 = x - sz/2, x1 = x + sz/2;

 double y0 = y - sz/2, y1 = y + sz/2;

 StdDraw.line(x0, y, x1, y);

 StdDraw.line(x0, y0, x0, y1);

 StdDraw.line(x1, y0, x1, y1);

 StdAudio.play(PlayThatNote.note(n, .25*n));

 draw(n-1, sz/2, x0, y0);

 draw(n-1, sz/2, x0, y1);

 draw(n-1, sz/2, x1, y0);

 draw(n-1, sz/2, x1, y1);

 }

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 draw(n, .5, .5, .5);

 }

}

% java HtreeDeluxe 4

Note. Order in which Hs are drawn is instructive.

33

Fractional Brownian motion

A process that models many phenomenon.

• Price of stocks.

• Dispersion of fluids.

• Rugged shapes of mountains and clouds.

• Shape of nerve membranes.

. . .

Price of an actual stock

Black-Scholes model (two different parameters)

Brownian bridge model

An actual mountain

34

Fractional Brownian motion simulation

Midpoint displacement method

• Consider a line segment from (x0, y0) to (x1, y1).

• If sufficiently short draw it and return. Otherwise:

• Divide the line segment in half, at (xm, ym).

• Choose δ at random from Gaussian distribution.

• Add δ to ym.

• Recur on the left and right line segments.

(xm, ym)

(x0, y0)

(x1, y1)

(xm, ym + δ)

δ

35

Brownian motion implementation

public class Brownian

{

 public static void 
 curve(double x0, double y0, double x1, double y1,

 double var, double s)

 {

 if (x1 - x0 < .01)

 { StdDraw.line(x0, y0, x1, y1); return; }

	 double xm = (x0 + x1) / 2;

	 double ym = (y0 + y1) / 2;

 double stddev = Math.sqrt(var);

	 double delta = StdRandom.gaussian(0, stddev);

	 curve(x0, y0, xm, ym+delta, var/s, s);

	 curve(xm, ym+delta, x1, y1, var/s, s);

 }

 public static void main(String[] args)

 {

 double hurst = Double.parseDouble(args[0]);

	 double s = Math.pow(2, 2*hurst);

 curve(0, .5, 1.0, .5, .01, s);

 }

}

% java Brownian 1

% java Brownian .125

control parameter

(see text)

36

A 2D Brownian model: plasma clouds

Midpoint displacement method

• Consider a rectangle centered at (x, y) with pixels at the four corners.

• If the rectangle is small, do nothing. Otherwise:

• Color the midpoints of each side the average of the endpoint colors.

• Choose δ at random from Gaussian distribution.

• Color the center pixel the average of the four corner colors plus δ

• Recurse on the four quadrants.

0

60

20

100

10

6030

80

49

Booksite code actually

draws a rectangle to

avoid artifacts

37

A Brownian cloud

38

A Brownian landscape

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://en.wikipedia.org/wiki/Droste_effect#mediaviewer/File:Droste.jpg

 http://www.mcescher.com/gallery/most-popular/circle-limit-iv/

 http://www.megamonalisa.com/recursion/

 http://fractalfoundation.org/OFC/FractalGiraffe.png

 http://www.nytimes.com/2006/12/15/arts/design/15serk.html?pagewanted=all&_r=0

 http://www.geocities.com/aaron_torpy/gallery.htm

CS.6.C.Recursion.Graphics

START RECORDING

Attendance Quiz

• Scan the QR code, or find today’s
attendance quiz under the “Quizzes” tab
on Canvas

• Password: to be announced in class

• After five minutes, we will discuss the
answers

Attendance Quiz: Recursion

Let Fn = Fn−1 + Fn−2 for n > 1 with F0 = 0 and F1 = 1.

Note that the Fibonacci sequence is defined as:

n 0 1 2 3 4 5 6 7
Fn 0 1 1 2 3 5 8 13

For example:

Attendance Quiz: Recursion

• Write your name

• Complete the following Java
program, FibonacciR.java

• Briefly explain why this naïve
implementation will be slow, and
how it can be improved.

public class FibonacciR

{

 public static long F(int n)

 {

 # YOUR CODE GOES HERE

 }

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 StdOut.println(F(n));

 }

}

Let Fn = Fn−1 + Fn−2 for n > 1 with F0 = 0 and F1 = 1.

Note that the Fibonacci sequence is defined as:

n 0 1 2 3 4 5 6 7
Fn 0 1 1 2 3 5 8 13

For example:

6. Recursion

•Foundations

•A classic example

•Recursive graphics

•Avoiding exponential waste

•Dynamic programming

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.6.D.Recursion.Waste

Fibonacci numbers

Let Fn = Fn−1 + Fn−2 for n > 1 with F0 = 0 and F1 = 1.

45

Examples.

• Model for reproducing rabbits.

• Nautilus shell.

• Mona Lisa.

• ...

Models many natural phenomena and is widely found in art and architecture.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 ...

Facts (known for centuries).

• Fn / Fn−1 ➛ Φ = 1.618... as n ➛ ∞

• Fn is the closest integer to Φn/√5

Leonardo Fibonacci

c. 1170 – c. 1250

golden ratio Fn / Fn−1

21

21 13

13

8

Fibonacci numbers and the golden ratio in the wild

46

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1

1

2

3

5

8

13

21

Computing Fibonacci numbers

47

Q. [Curious individual.] What is the exact value of F60 ?

A. [Novice programmer.] Just a second. I'll write a recursive program to compute it.

public class FibonacciR

{

 public static long F(int n)

 {

 if (n == 0) return 0;

 if (n == 1) return 1;

 return F(n-1) + F(n-2);

 }

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 StdOut.println(F(n));

 }

}

% java FibonacciR 5

5

% java FibonacciR 6

8

% java FibonacciR 10

55

% java FibonacciR 12

144

% java FibonacciR 50

12586269025

% java FibonacciR 60

takes a few minutes

Hmmm. Why is that?

Is something wrong with my computer?

Recursive call tree for Fibonacci numbers

48

1

1 1F(1)

F(2)

F(3) 2

1

1

0

1

F(4)
3

F(5) 5

1

0

1

F(0)

2

0

2

1

1

0

1

3

1

0

1

8
F(6)

F(58)

F(57)

F(56)

F(55)

Exponentially wasteful to recompute all these values.

(trillions of calls on F(0), not to mention calls on F(1), F(2),...)

Exponential waste

49

Let Cn be the number of times F(n) is called when computing F(60).

n Cn

60 1 F1

59 1 F2

58 2 F3

57 3 F4

56 5 F5

55 8 F6

... ...

0 >2.5×1012 F61

F(60)

F(59)

F(58)

F(57)

Exponential waste dwarfs progress in technology

If you engage in exponential waste, you will not be able to solve a large problem.

50

n time to compute Fn

50 minutes

60 hours

70 weeks

80 years

90 centuries

100 millenia

VAX 11/780

1970s
n time to compute Fn

30 minutes

40 hours

50 weeks

60 years

70 centuries

80 millenia

2010s: 10,000+ times faster

Macbook Air

2010s: "That program won't compute F80 before you graduate! "

1970s: "That program won't compute F60 before you graduate! "

Avoiding exponential waste

51

Memoization

• Maintain an array memo[] to
remember all computed values.

• If value known, just return it.

• Otherwise, compute it, remember
it, and then return it.

public class FibonacciM

{

 static long[] memo = new long[100];

 public static long F(int n)

 {

 if (n == 0) return 0;

 if (n == 1) return 1;

 if (memo[n] == 0)

 memo[n] = F(n-1) + F(n-2);

 return memo[n];

 }

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 StdOut.println(F(n));

 }

}

% java FibonacciM 50

12586269025

% java FibonacciM 60

1548008755920

% java FibonacciM 80

23416728348467685

Simple example of dynamic programming (next).

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://en.wikipedia.org/wiki/Fibonacci

 http://www.inspirationgreen.com/fibonacci-sequence-in-nature.html

 http://www.goldenmeancalipers.com/wp-content/uploads/2011/08/mona_spiral-1000x570.jpg

 http://www.goldenmeancalipers.com/wp-content/uploads/2011/08/darth_spiral-1000x706.jpg

 http://en.wikipedia.org/wiki/Ancient_Greek_architecture#mediaviewer/ 

 File:Parthenon-uncorrected.jpg

 https://openclipart.org/detail/184691/teaching-by-ousia-184691

CS.6.D.Recursion.Waste

7. Recursion

•Foundations

•A classic example

•Recursive graphics

•Avoiding exponential waste

•Dynamic programming

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.6.E.Recursion.DP

An alternative to recursion that avoids recomputation

Dynamic programming.

• Build computation from the "bottom up".

• Solve small subproblems and save solutions.

• Use those solutions to build bigger solutions.

54
Key advantage over recursive solution. Each subproblem is addressed only once.

Fibonacci numbers public class Fibonacci

{

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 long[] F =	new long[n+1];

 F[0] = 0; F[1] = 1;

 for (int i = 2; i <= n; i++)

 F[i] = F[i-1] + F[i-2];

 StdOut.println(F[n]);

 }

}

% java Fibonacci 50

12586269025

% java Fibonacci 60

1548008755920

% java Fibonacci 80

23416728348467685

Richard Bellman

1920-1984

DP example: Longest common subsequence

55

Def. A subsequence of a string s is any string formed by deleting characters from s.

s = ggcaccacg

 cac

 gcaacg

 ggcaacg

 ggcacacg

 ...

[2n subsequences in a string of length n]

Goal. Efficient algorithm to compute the LCS and/or its length

t = acggcggatacg

 gacg

 ggggg

 cggcgg

 ggcaacg

 ggggaacg

 ...

Ex 1. Ex 2.

ggcaccacg

ggcaccacg

ggcaccacg

ggcaccacg

Def. The LCS of s and t is the longest string that is a subsequence of both.

longest common subsequence

acggcggatacg

acggcggatacg

acggcggatacg

acggcggatacg

acggcggatacg

numerous scientific applications

Longest common subsequence

56

Approach. Keep track of the length of the LCS of s[i..M) and t[j..N) in opt[i, j]

Goal. Efficient algorithm to compute the length of the LCS of two strings s and t.

Three cases:

• i = M or j = N 
 opt[i][j] = 0

• s[i] = t[j] 
 opt[i][j] = opt[i+1, j+1] + 1

• otherwise 
 opt[i][j] = max(opt[i, j+1], opt[i+1][j])

s[6..9) = acg

t[7..12) = atacg

LCS(cg, tacg) = cg

LCS(acg, atacg) = acg

Ex: i = 6, j = 7

s[6..9) = acg

t[4..12) = cggatacg

LCS(acg, ggatacg) = acg

LCS(cg, cggatacg) = cg

LCS(acg, cggatacg) = acg

Ex: i = 6, j = 4

t = acggcggatacgs = ggcaccacg

LCS example

57

 0 1 2 3 4 5 6 7 8 9 10 11 12

 a c g g c g g a t a c g

0 g ? ? ? ? ? ? ? ? ? ? ? ? 0

1 g ? ? ? ? ? ? ? ? ? ? ? ? 0

2 c ? ? ? ? ? ? ? ? ? ? ? ? 0

3 a ? ? ? ? ? ? ? ? ? ? ? ? 0

4 c ? ? ? ? ? ? ? ? ? ? ? ? 0

5 c ? ? ? ? ? ? ? ? ? ? ? ? 0

6 a ? ? ? ? ? ? ? ? ? ? ? ? 0

7 c ? ? ? ? ? ? ? ? ? ? ? ? 0

8 g ? ? ? ? ? ? ? ? ? ? ? ? 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

String t, indexed by j

String s,
indexed

by i

First case:

• i = M or j = N 
 opt[i][j] = 0

LCS example

58

 0 1 2 3 4 5 6 7 8 9 10 11 12

 a c g g c g g a t a c g

0 g ? ? ? ? ? ? ? ? ? ? ? ? 0

1 g ? ? ? ? ? ? ? ? ? ? ? ? 0

2 c ? ? ? ? ? ? ? ? ? ? ? ? 0

3 a ? ? ? ? ? ? ? ? ? ? ? ? 0

4 c ? ? ? ? ? ? ? ? ? ? ? ? 0

5 c ? ? ? ? ? ? ? ? ? ? ? ? 0

6 a ? ? ? ? ? ? ? ? ? ? ? ? 0

7 c ? ? ? ? ? ? ? ? ? ? ? ? 0

8 g ? ? ? ? ? ? ? ? ? ? ? 1 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

String t, indexed by j

String s,
indexed

by i

opt[i][j] = opt[i+1, j+1] + 1

LCS example

59

 0 1 2 3 4 5 6 7 8 9 10 11 12

 a c g g c g g a t a c g

0 g 7 7 7 6 6 6 5 4 3 3 2 1 0

1 g 6 6 6 6 5 5 5 4 3 3 2 1 0

2 c 6 5 5 5 5 4 4 4 3 3 2 1 0

3 a 6 5 4 4 4 4 4 4 3 3 2 1 0

4 c 5 5 4 4 4 3 3 3 3 3 2 1 0

5 c 4 4 4 4 4 3 3 3 3 3 2 1 0

6 a 3 3 3 3 3 3 3 3 3 3 2 1 0

7 c 2 2 2 2 2 2 2 2 2 2 2 1 0

8 g 1 1 1 1 1 1 1 1 1 1 1 1 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

opt[i][j] = opt[i+1, j+1] + 1

opt[i][j] = max(opt[i, j+1], opt[i+1][j])

String t, indexed by j

String s,
indexed

by i

LCS length implementation

60
Exercise. Add code to print LCS itself (see LCS.java on booksite for solution).

public class LCS

{

 public static void main(String[] args)

 {

 String s = args[0];

 String t = args[1];

 int M = s.length();

 int N = t.length();

 int[][] opt = new int[M+1][N+1];

 for (int i = M-1; i >= 0; i--)

 for (int j = N-1; j >= 0; j--)

 if (s.charAt(i) == t.charAt(j))

 opt[i][j] = opt[i+1][j+1] + 1;

 else

 opt[i][j] = Math.max(opt[i+1][j], opt[i][j+1]);

 System.out.println(opt[0][0]);

 }

}

% java LCS ggcaccacg acggcggatacg

7

61

Dynamic programming and recursion

Broadly useful approaches to solving problems by combining solutions to smaller subproblems.

Why learn DP and recursion?

• Represent a new mode of thinking.

• Provide powerful programming paradigms.

• Give insight into the nature of computation.

• Successfully used for decades.

recursion dynamic programming

advantages
Decomposition often obvious.

Easy to reason about correctness.
Avoids exponential waste.

Often simpler than memoization.

pitfalls
Potential for exponential waste.

Decomposition may not be simple.

Uses significant space.

Not suited for real-valued arguments.

Challenging to determine order of computation

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://upload.wikimedia.org/wikipedia/en/7/7a/Richard_Ernest_Bellman.jpg

 http://apprendre-math.info/history/photos/Polya_4.jpeg

 http://www.advent-inc.com/documents/coins.gif

 http://upload.wikimedia.org/wikipedia/commons/a/a0/2006_Quarter_Proof.png

 http://upload.wikimedia.org/wikipedia/commons/3/3c/Dime_Obverse_13.png

 http://upload.wikimedia.org/wikipedia/commons/7/72/Jefferson-Nickel-Unc-Obv.jpg

 http://upload.wikimedia.org/wikipedia/commons/2/2e/US_One_Cent_Obv.png

CS.6.E.Recursion.DP

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

6. Recursion

Section 2.3

http://introcs.cs.princeton.edu

Coin Changing
Acknowledgements:

Virginia, Princeton, Penn, Washington Post

https://www.cs.virginia.edu/~jh2jf/courses/fall20%2019/cs4102/
https://www.cs.princeton.edu/courses/archive/s%20pring18/cos423/

Coin Changing

Coin Changing: Greedy Algorithm

How to make 90 cents?

Coin Changing: Greedy Solution

Optimal!

Coin Changing: Greedy Solution

Coin Changing: Greedy Solution

Stamps: greedy != optimal

●Denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500

●How to make 140?
– Optimal Solution? Greedy Solution?

Cashier's Algorithm
• Repeatedly:

• Add coin of the largest value that does not take us past the amount to be
paid

• This is a greedy algorithm

• Assume we have coins worth:

• 100¢, 25¢, 10¢, 5¢, 1¢

• Is this greedy algorithm optimal (i.e., does it use the fewest number of coins)?

4 pennies

4P + 1 nickel

4P + 2 dimes

3Q + 4P + 2D

General Coin Changing Algorithm
• So, the greedy cashier's algorithm works…

• …if we assume we have coins worth:

• 100¢, 25¢, 10¢, 5¢, 1¢

• But as in the postage stamp example, with different coin values, a greedy
algorithm may not be optimal

• Is there an algorithm that works, for any set of coin/stamp values?

• Yes, as we will see next!

General Coin Changing Algorithm: Recursion
• We can reduce the problem recursively by choosing the first coin, and solving for the

amount that is left

• For a target value x (e.g., x = 99¢), and the coin set with denominations 
{d1, d2, …, dn}

• Choose the best solution from:

• One d1 coin plus the best solution for (x - d1)

• One d2 coin plus the best solution for (x - d2)

• …

• One dn coin plus the best solution for (x - dn)

• If di > x, we say that it takes ∞ coins to make change, to indicate that it's impossible

• However… this algorithm is inefficient, because overlapping subproblems are solved
repeatedly

General Coin Changing Algorithm
– Dynamic Programming

●Key Idea: Solve the problem first for one cent, then two cents, then three
cents, etc., up to the desired amount
●Save each answer along the way !

●For each new amount N, compute all the possible pairs of previous
answers which sum to N
●For example, to find the solution for 13¢,
●First, solve for all of 1¢, 2¢, 3¢, ..., 12¢
●Next, choose the best solution among:
●Solution for 1¢ + solution for 12¢
●Solution for 2¢ + solution for 11¢
●Solution for 3¢ + solution for 10¢
●Solution for 4¢ + solution for 9¢
●Solution for 5¢ + solution for 8¢
●Solution for 6¢ + solution for 7¢

●This is great! How to manage this process in general?

Dynamic Programming (DP)
●Powerful technique for optimization problems with

– Optimal sub-structure: optimal solution to a larger problem
contains the optimal solutions to smaller ones

– Overlapping sub-problems

●General process for developing a DP solution
– Define sub-problems
– Identify recurrence relations among sub-problems
– Find a good order to solve the sub-problems, save their

solutions, and finally solve the original problem
● Top-down recursion with memoization: larger problems →

related smaller problems
● Bottom-up iteration: smaller problems → larger problems

Making Change

Given a new coin i, what’s the fewest coins required to make j in change?

Amount 0 1 2 3 4 5 6 7

senum=1 0 1 2 3 4 5 6 7

seon=2

shum=4

limnah=7

c[i,j] = min. number of “coins” to make j change with coins 1..i

The original problem is C[n,x], at the bottom right corner of the table

j

i

use coin iskip coin i

Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2

shum=4

limnah=7

c[i,j] = min. number of coins to make j change with coins 1..i.

j

i

Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 ???

shum=4

limnah=7

How does one compute c[2,2]?

j

i

Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1

shum=4

limnah=7

How does one compute c[2,2]?

j

i

+1

Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1 2

shum=4

limnah=7

How does one compute c[2,3]?

j

i

+1

Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1 2 2

shum=4

limnah=7

j

i

+1

Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1 2 2 3

shum=4

limnah=7

j

i

+1

Making Change

Amount 0 1 2 3 4 5 6 7

senine=1 0 1 2 3 4 5 6 7

seon=2 0 1 1 2 2 3 3 4

shum=4 0 1 1 2 1 2 2 3

limnah=7 0 1 1 2 1 2 2 1

j

i

