Recursion

CS 121: Data Structures

START RECORDING

Attendance Quiz: I/O and Functions

- Scan the QR code, or find today's attendance quiz under the "Quizzes" tab on Canvas
- Password: to be announced in class
- After five minutes, we will discuss the answers

Attendance Quiz: I/O and Functions

- Write your name
- Translate the following pseudocode into a Java program, Bouncer.java

The bouncer should ask the user for their age. "What is your age? "

The bouncer should use a rules() method to check whether the age meets the criteria for entry into the establishment. Based on the rules, the appropriate answer should be printed.

- Age less than 10: "Where are your parents?"
- Age less than 21: "Sorry, you can't enter."
- Age at 1east 21: "We1come!"

Outline

- Attendance quiz
- Foundations
- A classic example
- Recursive graphics
- Avoiding exponential waste
- Dynamic programming

COMPUTER SCIENCE SEDGEWICK/WAYNE PART I: PROGRAMMING IN JAVA

6. Recursion

http:// introcs.cs.princeton.edu

- Foundations
- A classic example
- Recursive graphics
- Avoiding exponential waste
- Dynamic programming

Overview
Q. What is recursion?
A. When something is specified in terms of itself.

Why learn recursion?

- Represents a new mode of thinking.
- Provides a powerful programming paradigm.

- Enables reasoning about correctness.
- Gives insight into the nature of computation.

Many computational artifacts are naturally self-referential.

- File system with folders containing folders.
- Fractal graphical patterns.
- Divide-and-conquer algorithms (stay tuned).

Mathematical induction (quick review)

To prove a statement involving a positive integer N

- Base case. Prove it for some specific values of N.
- Induction step. Assuming that the statement is true for all positive integers less than N, use that fact to prove it for N.

Example The sum of the first N odd integers is N^{2}.
Base case. True for $N=1$.
Induction step. The N th odd integer is $2 N-1$.

An alternate proof

Example: Convert an integer to binary

Recursive program

To compute a function of a positive integer N

- Base case. Return a value for small N.
- Reduction step. Assuming that it works for smaller values of its argument, use the function to compute a return value for N.

```
public class Binary
{
    public static String convert(int N)
    {
        if (N == 1) return "1";
        return convert(N/2) + (N % 2); String"0" or"1
    }
    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        StdOut.println(convert(N));
    }
}
```

```
% java Binary 6
```

% java Binary 6
110
110
% java Binary 37
% java Binary 37
100101
100101
% java Binary }99999
% java Binary }99999
11110100001000111111

```
11110100001000111111
```

A. Use mathematical induction.

Proving a recursive program correct

Recursion

To compute a function of N

- Base case. Return a value for small N.
- Reduction step. Assuming that it works for smaller values of its argument, use the function to compute a return value for N.

Mathematical induction

To prove a statement involving N

- Base case. Prove it for small N.
- Induction step. Assuming that the statement is true for all positive integers less than N, use that fact to prove it for N.

Recursive program

```
public static String convert(int N)
{
    if (N == 1) return "1";
    return convert(N/2) + (N % 2);
}
```


Correctness proof, by induction

convert() computes the binary representation of N

- Base case. Returns "1" for $N=1$.
- Induction step. Assume that convert() works for $N / 2$

1. Correct to append " 0 " if N is even, since $N=2(N / 2)$.

2. Correct to append " 1 " if N is odd since $N=2(N / 2)+1$.
\square

Mechanics of a function call

System actions when any function is called

- Save environment (values of all variables and call location).
- Initialize values of argument variables.
- Transfer control to the function.
- Restore environment (and assign return value)
- Transfer control back to the calling code.

```
public class Binary
{
    public static String convert(int N)
    {
        if (N == 1) return "1";
        return convert(N/2) + (N % 2);
    }
    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        System.out.println(convert(N));
    }
}
```

```
convert(26)
    if (N == 1) return "1";
    return "1101" + "0";
```

```
convert(13)
    if (N == 1) return "1";
    return "110" + "1";
```

```
convert(6)
    if (N == 1) return "1";
    return "11" + "0";
```

convert(3)
if ($N==1$) return "1";
return "1" + "1";
convert(1)
if ($\mathrm{N}==1$) return "1";
return convert(0) + "1";
\% java Convert 26
11010

Programming with recursion: typical bugs

Both lead to infinite recursive loops (bad news).
On the CLI, stop them with Control+C

Collatz Sequence

Collatz function of N.

- If N is 1 , stop.
- If N is even, divide by 2 .

$$
\begin{array}{lllllllllll}
7 & 22 & 11 & 34 & 17 & 52 & 26 & 13 & 49 & 20 & \ldots .
\end{array}
$$

- If N is odd, multiply by 3 and add 1.

```
public static void collatz(int N)
{
    StdOut.print(N + " '');
    if (N == 1) return;
    if (N % 2 == 0) collatz(N / 2);
    else collatz(3*N + 1);
}
% java Collatz 7
7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
```

Amazing fact. No one knows whether or not this function terminates for all $N(!)$

Note. We usually ensure termination by only making recursive calls for smaller N.

THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY TWO AND IF IT'S ODD MULTIPLY IT BY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LONG ENOUGH, EVENTUALUY YOUR FRIENDS WILL STOP CAUUNG TO SEE IF YOU WANT TO HANG OUT.

S E D G E W I C K / W A Y N E

PART I: PROGRAMMING IN JAVA

Image sources
http://xkcd.com/710/

6. Recursion

- Foundations
- A classic example
- Recursive graphics
- Avoiding exponential waste
- Dynamic programming

Warmup: subdivisions of a ruler (revisited)

ru7er (n) : create subdivisions of a ruler to $1 / 2^{n}$ inches.

- Return one space for $n=0$.
- Otherwise, sandwich n between two copies of ruler(n-1).


```
public class Ruler
{
    public static String ruler(int n)
    {
        if (n == 0) return " ";
        return ruler(n-1) + n + ruler(n-1);
    }
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        StdOut.println(ruler(n));
    }
}
```

```
% java Ruler 1
    1
% java Ruler 2
    121
% java Ru7er 3
    1213121
% java Ru7er 4
    1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
% java Ruler 50
Exception in thread "main"
java.7ang.OutOfMemoryError:
Java heap space
```


Tracing a recursive program

Use a recursive call tree

- One node for each recursive call.
- Label node with return value after children are labeled.

Towers of Hanoi puzzle

A legend of uncertain origin

- $n=64$ discs of differing size; 3 posts; discs on one of the posts from largest to smallest.
- An ancient prophecy has commanded monks to move the discs to another post.
- When the task is completed, the world will end.

$$
n=10
$$

Rules

- Move discs one at a time.
- Never put a larger disc on a smaller disc.
Q. Generate list of instruction for monks ?
Q. When might the world end ?

Towers of Hanoi

For simple instructions, use cyclic wraparound

- Move right means 1 to 2,2 to 3 , or 3 to 1 .
- Move left means 1 to 3,3 to 2 , or 2 to 1 .

A recursive solution

- Move $n-1$ discs to the left (recursively).
- Move largest disc to the right.
- Move $n-1$ discs to the left (recursively).

Towers of Hanoi solution $(\mathrm{n}=3)$

Towers of Hanoi: recursive solution

hanoi (n) : Print moves for n discs.

- Return one space for $n=0$.
- Otherwise, set move to the specified move for disc n.
- Then sandwich move between two copies of hanoi (n-1).

```
public class Hanoi
{
    public static String hanoi(int n, boolean left)
    {
        if (n == 0) return " ";
        String move;
        if (left) move = n + "L";
        else move = n + "R";
        return hanoi(n-1, !left) + move + hanoi(n-1, !left);
    }
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        StdOut.println(hanoi(n, false));
    }
}
```

```
% java Hanoi 3
```

% java Hanoi 3
1R 2L 1R 3R 1R 2L 1R

```
    1R 2L 1R 3R 1R 2L 1R
```


Recursive call tree for towers of Hanoi

Structure is the same as for the ruler function and suggests 3 useful and easy-to-prove facts.

- Each disc always moves in the same direction.
- Moving smaller disc always alternates with a unique legal move.
- Moving n discs requires $2^{n}-1$ moves.

Answers for towers of Hanoi

Q. Generate list of instructions for monks ?
A. (Long form). 1L 2R 1L 3L 1L 2R 1L 4R 1L 2R 1L 3L 1L 2R 1L 5L 1L 2R 1L 3L 1L 2R 1L 4R ...
A. (Short form). Alternate " $1 \mathrm{~L}^{\text {" }}$ with the only legal move not involving the disc 1 .
"L" or "R" depends on whether n is odd or even
Q. When might the world end ?
A. Not soon: need $2^{64}-1$ moves
moves per second
1
1 billion
end of world
5.84 billion centuries
5.84 centuries

Note: Recursive solution has been proven optimal.

COMPUTER SCIENCE

 S E D G E W I C K / W A Y N E PART I: PROGRAMMING IN JAVA- Foundations
- A classic example
- Recursive graphics
- Avoiding exponential waste
- Dynamic programming

Recursive graphics in the wild

Black, White and Read All Over Over国

H -tree of order n

- If n is 0 , do nothing.
- Draw an H, centered.
- Draw four H -trees of order $n-1$ and half the size, centered at the tips of the H .

order 1

order 2

order 3

Application. Connect a large set of regularly spaced sites to a single source.

 Н

 CH

形 CH

Recursive H-tree implementation

public class Htree
\{
public static void draw(int n, double sz, double x, double y)
\{
if (n == 0) return;
double $x 0=x-s z / 2, x 1=x+s z / 2 ;$
double $y 0=y-s z / 2, y 1=y+s z / 2 ;$
StdDraw.1ine(x0, y, x1, y);
StdDraw.line(x0, y0, x0, y1);
StdDraw.line(x1, y0, x1, y1);
draw(n-1, sz/2, x0, y0);
draw(n-1, sz/2, x0, y1);
draw(n-1, sz/2, x1, y0);
draw(n-1, sz/2, x1, y1);
\}
public static void main(String[] args)
\{
int $\mathrm{n}=$ Integer.parseInt(args[0]);
draw(n, .5, .5, .5);
\}
\}
\% java Htree 3

Deluxe H-tree implementation

```
public class HtreeDeluxe
{
    public static void draw(int n, double sz,
                doub7e x, doub7e y)
    {
        if (n == 0) return;
        double x0 = x - sz/2, x1 = x + sz/2;
        double y0 = y - sz/2, y1 = y + sz/2;
        StdDraw.line(x0, y, x1, y);
        StdDraw.line(x0, y0, x0, y1);
        StdDraw.line(x1, y0, x1, y1);
        StdAudio.play(PlayThatNote.note(n, .25*n));
        draw(n-1, sz/2, x0, y0);
        draw(n-1, sz/2, x0, y1);
        draw(n-1, sz/2, x1, y0);
        draw(n-1, sz/2, x1, y1);
    }
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        draw(n, .5, .5, .5);
    }
}
```


Fractional Brownian motion

A process that models many phenomenon.
Brownian bridge model

- Price of stocks.
- Dispersion of fluids.
- Rugged shapes of mountains and clouds.
- Shape of nerve membranes.

An actual mountain

Price of an actual stock

Black-Scholes model (two different parameters)

Fractional Brownian motion simulation

Midpoint displacement method

- Consider a line segment from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$.
- If sufficiently short draw it and return. Otherwise:
- Divide the line segment in half, at (x_{m}, y_{m}).
- Choose δ at random from Gaussian distribution.
- Add δ to y_{m}.

- Recur on the left and right line segments.

Brownian motion implementation

```
public class Brownian
{
    public static void
    curve(doub7e x0, doub7e y0, doub7e x1, doub7e y1,
                doub7e var, double s)
    {
        if (x1 - x0 < .01)
        { StdDraw.1ine(x0, y0, x1, y1); return; }
        double xm = (x0 + x1) / 2;
        double ym = (y0 + y1) / 2;
        double stddev = Math.sqrt(var);
        double de7ta = StdRandom.gaussian(0, stddev);
        curve(x0, y0, xm, ym+de7ta, var/s, s);
        curve(xm, ym+delta, x1, y1, var/s, s);
    }
    public static void main(String[] args)
    {
        double hurst = Double.parseDouble(args[0]);
        double s = Math.pow(2, 2*hurst);
        curve(0, .5, 1.0, .5, .01, s);> control parameter
    }
                                    (see text)
}
```


A 2D Brownian model: plasma clouds

Midpoint displacement method

- Consider a rectangle centered at (x, y) with pixels at the four corners.
- If the rectangle is small, do nothing. Otherwise:
- Color the midpoints of each side the average of the endpoint colors.
- Choose δ at random from Gaussian distribution.

Booksite code actually

- Color the center pixel the average of the four corner colors plus δ
_ draws a rectangle to avoid artifacts
- Recurse on the four quadrants.

A Brownian cloud

A Brownian landscape

Image sources
http://en.wikipedia.org/wiki/Droste_effect\#mediaviewer/File:Droste.jpg
http://www.mcescher.com/ga11ery/most-popular/circle-1imit-iv/
http://www.megamonalisa.com/recursion/
http://fractalfoundation.org/OFC/FractalGiraffe.png
http://www.nytimes.com/2006/12/15/arts/design/15serk.htm1?pagewanted=a11\&_r=0 http://www.geocities.com/aaron_torpy/gallery.htm

START RECORDING

Attendance Quiz

Attendance Quiz: Recursion

- Scan the QR code, or find today's attendance quiz under the "Quizzes" tab on Canvas
- Password: to be announced in class
- After five minutes, we will discuss the answers

Note that the Fibonacci sequence is defined as:
Let $F_{n}=F_{n-1}+F_{n-2}$ for $n>1$ with $F_{0}=0$ and $F_{1}=1$.

For example:

n	0	1	2	3	4	5	6	7
F_{n}	0	1	1	2	3	5	8	13

Attendance Quiz: Recursion

Note that the Fibonacci sequence is defined as:
Let $F_{n}=F_{n-1}+F_{n-2}$ for $n>1$ with $F_{0}=0$ and $F_{1}=1$.

- Write your name
- Complete the following Java program, FibonacciR.java

For example:

n	0	1	2	3	4	5	6	7
F_{n}	0	1	1	2	3	5	8	13

```
public class FibonacciR
{
    public static long F(int n)
    {
        # YOUR CODE GOES HERE
    }
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        StdOut.println(F(n));
    }
}
```

- Foundations
- A classic example
- Recursive graphics
- Avoiding exponential waste
- Dynamic programming

Let $F_{n}=F_{n-1}+F_{n-2}$ for $n>1$ with $F_{0}=0$ and $F_{1}=1$.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
F_{n}	0	1	1	2	3	5	8	13	21	34	55	89	144	233	\ldots

Models many natural phenomena and is widely found in art and architecture.
Leonardo Fibonacci

Examples.

- Model for reproducing rabbits.
- Nautilus shell.
- Mona Lisa.
- ...

Facts (known for centuries).

- $F_{n} / F_{n-1} \rightarrow \Phi=1.618 \ldots$ as $n \rightarrow \infty$
- F_{n} is the closest integer to $\phi^{n} / \sqrt{ } 5$
golden ratio F_{n} / F_{n-1}

Fibonacci numbers and the golden ratio in the wild

Computing Fibonacci numbers

Q. [Curious individual.] What is the exact value of F_{60} ?
A. [Novice programmer.] Just a second. l'll write a recursive program to compute it.

```
public class FibonacciR
{
    pub1ic static long F(int n)
    {
            if (n == 0) return 0;
            if (n == 1) return 1;
            return F(n-1) + F(n-2);
    }
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        StdOut.println(F(n));
    }
}
```


Recursive call tree for Fibonacci numbers

Exponential waste

Let C_{n} be the number of times $F(n)$ is called when computing $F(60)$.

Exponential waste dwarfs progress in technology

If you engage in exponential waste, you will not be able to solve a large problem.

1970s

2010s: 10,000+ times faster

1970s: "That program won't compute F_{60} before you graduate! "

2010s: "That program won't compute F_{80} before you graduate! "

Avoiding exponential waste

Memoization

- Maintain an array memo[] to remember all computed values.
- If value known, just return it.
- Otherwise, compute it, remember it , and then return it.

```
public class FibonacciM
{
    static long[] memo = new long[100];
    public static long F(int n)
    {
        if (n == 0) return 0;
        if (n == 1) return 1;
        if (memo[n] == 0)
            memo[n] = F(n-1) + F(n-2);
        return memo[n];
    }
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        StdOut.println(F(n));
    }
}
```

\% java FibonacciM 50
12586269025
\% java FibonacciM 60
1548008755920
\% java FibonacciM 80
23416728348467685

Simple example of dynamic programming (next).

Image sources

http://en.wikipedia.org/wiki/Fibonacci
http://www.inspirationgreen.com/fibonacci-sequence-in-nature.htm1
http://www.goldenmeancalipers.com/wp-content/up1oads/2011/08/mona_spira1-1000x570.jpg
http://www.goldenmeancalipers.com/wp-content/up1oads/2011/08/darth_spira1-1000x706.jpg
http://en.wikipedia.org/wiki/Ancient_Greek_architecture\#mediaviewer/
File:Parthenon-uncorrected.jpg
https://openclipart.org/detai1/184691/teaching-by-ousia-184691

- Foundations
- A classic example
- Recursive graphics
- Avoiding exponential waste
- Dynamic programming

An alternative to recursion that avoids recomputation

Dynamic programming.

- Build computation from the "bottom up".
- Solve small subproblems and save solutions.
- Use those solutions to build bigger solutions.


```
Fibonacci numbers
public class Fibonacci
{
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        long[] F = new long[n+1];
        F[0] = 0; F[1] = 1;
            F[i] = F[i-1] + F[i-2];
        StdOut.println(F[n]);
    }
}
```

Key advantage over recursive solution. Each subproblem is addressed only once.

DP example: Longest common subsequence

Def. A subsequence of a string s is any string formed by deleting characters from s.

```
Ex 1. s = ggcaccacg
    cac ggcaccac
    gcaacg gcaccacg
    ggcaacg ggcaccacg
    ggcacacg ggca`cacg
    [2n subsequences in a string of length n]
```

longest common subsequence

Def. The LCS of s and t is the longest string that is a subsequence of both.

Goal. Efficient algorithm to compute the length of the LCS of two strings s and t.
Approach. Keep track of the length of the LCS of s[i..M) and t[j..N) in opt[i, j]

$$
\mathrm{s}=\text { ggcaccacg } \quad \mathrm{t}=\text { acggcggatacg }
$$

Three cases:

- $i=M$ or $j=N$ opt[i][j] = 0
- $s[i]=t[j]$ opt[i][j] = opt[i+1, j+1] + 1
- otherwise

Ex: $i=6, j=7$

$$
s[6 . .9)=a c g
$$

$$
\mathrm{t}[7 . .12)=\text { atacg }
$$

$$
\operatorname{LCS}(\mathrm{cg}, \mathrm{tacg})=\mathrm{cg}
$$

$$
\operatorname{LCS}(\mathrm{acg}, \mathrm{atacg})=\mathrm{acg}
$$

$$
\begin{aligned}
& \text { Ex: } i=6, j=4 \\
& s[6 . .9)=\text { acg } \\
& \mathrm{t}[4 . .12)=\text { cggatacg } \\
& \operatorname{LCS}(\text { acg, ggatacg })=\mathrm{acg} \\
& \operatorname{LCS}(c g, \text { cggatacg })=\mathrm{cg} \\
& \operatorname{LCS}(\text { acg, cggatacg })=\mathrm{acg}
\end{aligned}
$$

LCS example

String t , indexed by j

0	1	2	3	4	5	6	7	8	9	10	11	12
a	c	g	g	c	g	g	a	t	a	c	g	

| | 0 g | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 g | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| String s, | 2 c | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| indexed | 3 a | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| by i | 4 c | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| | 5 c | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| | 6 a | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| | 7 c | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| | 8 g | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 |
| | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

First case:

- $\mathrm{i}=\mathrm{M}$ or $\mathrm{j}=\mathrm{N}$ opt[i][j] $=0$

LCS example

String t , indexed by j

0	1	2	3	4	5	6	7	8	9	10	11	12
a	c	g	g	c	g	g	a	t	a	c	g	

LCS example

String t, indexed by j

0	1	2	3	4	5	6	7	8	9	10	11	12
a	c	g	g	c	g	g	a	t	a	c	g	

LCS length implementation

```
public class LCS
{
    public static void main(String[] args)
    {
        String s = args[0];
        String t = args[1];
        int M = s.length();
        int N = t.length();
        int[][] opt = new int[M+1][N+1];
        for (int i = M-1; i >= 0; i--)
            for (int j = N-1; j >= 0; j--)
            if (s.charAt(i) == t.charAt(j))
                opt[i][j] = opt[i+1][j+1] + 1;
            else
                opt[i][j] = Math.max(opt[i+1][j], opt[i][j+1]);
        System.out.println(opt[0][0]);
    }
}
```

Exercise. Add code to print LCS itself (see LCS. java on booksite for solution).

Dynamic programming and recursion

Broadly useful approaches to solving problems by combining solutions to smaller subproblems.

Why learn DP and recursion?

- Represent a new mode of thinking.
- Provide powerful programming paradigms.
- Give insight into the nature of computation.
- Successfully used for decades.

recursion

Decomposition often obvious. Easy to reason about correctness.

dynamic programming
Avoids exponential waste. Often simpler than memoization.

Uses significant space.
Not suited for real-valued arguments. Challenging to determine order of computation

Image sources

http://upload.wikimedia.org/wikipedia/en/7/7a/Richard_Ernest_Bel1man.jpg http://apprendre-math.info/history/photos/Polya_4.jpeg http://www.advent-inc.com/documents/coins.gif
http://upload.wikimedia.org/wikipedia/commons/a/a0/2006_Quarter_Proof.png http://up1oad.wikimedia.org/wikipedia/commons/3/3c/Dime_Obverse_13.png http://upload.wikimedia.org/wikipedia/commons/7/72/Jefferson-Nicke1-Unc-Obv.jpg http://upload.wikimedia.org/wikipedia/commons/2/2e/US_One_Cent_Obv.png

6. Recursion

http://introcs.cs.princeton.edu

Coin Changing

Acknowledgements:
Virginia, Princeton, Penn, Washington Post

Coin Changing

Given access to an unlimited number of pennies, nickels dimes, and quarters, give an algorithm which gives change for a target value x using the fewest number of coins.

Coin Changing: Greedy Algorithm

Given: target value x, list of coins $C=\left[c_{1}, \ldots, c_{n}\right]$

$$
\text { (in this case } C=[1,5,10,25] \text {) }
$$

Repeatedly select the largest coin less than the remaining target value:
while $x>0$:
let $c=\max \left(c_{i} \in\left\{c_{1}, \ldots, c_{n}\right\} \mid c_{i} \leq x\right)$ add c to list L
$x=x-c$
output L
Example of a greedy algorithm: always choose the "optimal" choice

How to make 90 cents?

Coin Changing: Greedy Solution

When can we use the greedy solution?

\qquad

Optimal!

Coin Changing: Greedy Solution

Suppose we added a new coin worth 11 cents. In conjunction with pennies, nickels, dimes, and quarters, find the minimum number of coins needed to give 90 cents of change.

Coin Changing: Greedy Solution

Stamps: greedy != optimal

.Denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500
.How to make 140 ?

- Optimal Solution? Greedy Solution?

Cashier's Algorithm

- Repeatedly:
- Add coin of the largest value that does not take us past the amount to be paid
- This is a greedy algorithm
- Assume we have coins worth:
- 100ф, 25¢, 10¢, 5¢, 1¢
- Is this greedy algorithm optimal (i.e., does it use the fewest number of coins)?

Properties of any optimal solution (for U.S. coin denominations)

Property. Number of pennies ≤ 4.
Pf. Replace 5 pennies with 1 nickel.

Property. Number of nickels ≤ 1.
Property. Number of quarters ≤ 3.

Property. Number of nickels + number of dimes ≤ 2.
Pf.

- Recall: ≤ 1 nickel.
- Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel;
- Replace 2 dimes and 1 nickel with 1 quarter.

dollars (100థ)

quarters (25§)

dimes (10¢)

nickels

Optimality of cashier's algorithm (for U.S. coin denominations)

Theorem. Cashier's algorithm is optimal for U.S. coins $\{1,5,10,25,100\}$. Pf. [by induction on amount to be paid x]

- Consider optimal way to change $c_{k} \leq x<c_{k+1}$: greedy takes coin k.
- We claim that any optimal solution must take coin k.
- if not, it needs enough coins of type c_{1}, \ldots, c_{k-1} to add up to x
- table below indicates no optimal solution can do this
- Problem reduces to coin-changing $x-c_{k}$ cents, which, by induction, is optimally solved by cashier's algorithm. -

k	c_{k}	all optimal solutions must satisfy	max value of coin denominations $c_{1}, c_{2}, \ldots, c_{k-1}$ in any optimal solution
1	1	$P \leq 4$	-
2	5	$N \leq 1$	4
3	10	$N+D \leq 2$	$4+5=9$
4	25	$Q \leq 3$	$20+4=24$
5	100	no limit	$75+24=99 \longleftarrow$

General Coin Changing Algorithm

- So, the greedy cashier's algorithm works...
- ...if we assume we have coins worth:
- 100¢, 25¢, 10¢, 5¢, 1 ¢
- But as in the postage stamp example, with different coin values, a greedy algorithm may not be optimal
- Is there an algorithm that works, for any set of coin/stamp values?
- Yes, as we will see next!

General Coin Changing Algorithm: Recursion

- We can reduce the problem recursively by choosing the first coin, and solving for the amount that is left
- For a target value x (e.g., $x=99 ¢$), and the coin set with denominations $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- Choose the best solution from:
- One d_{1} coin plus the best solution for $\left(\mathrm{x}-\mathrm{d}_{1}\right)$
- One d_{2} coin plus the best solution for $\left(\mathrm{x}-\mathrm{d}_{2}\right)$
- ...
- One d_{n} coin plus the best solution for $\left(\mathrm{x}-\mathrm{d}_{\mathrm{n}}\right)$
- If $d_{i}>x$, we say that it takes ∞ coins to make change, to indicate that it's impossible
- However... this algorithm is inefficient, because overlapping subproblems are solved repeatedly

General Coin Changing Algorithm - Dynamic Programming

.Key Idea: Solve the problem first for one cent, then two cents, then three cents, etc., up to the desired amount
.Save each answer along the way !
.For each new amount N , compute all the possible pairs of previous answers which sum to N
.For example, to find the solution for $13 ¢$,
.First, solve for all of $1 \phi, 2 \phi, 3 \phi, \ldots, 12 \phi$
.Next, choose the best solution among:
.Solution for $1 \phi+$ solution for 12ϕ
.Solution for $2 \phi+$ solution for 11ϕ
.Solution for $3 \phi+$ solution for 10ϕ
-Solution for $4 \phi+$ solution for $9 \varnothing$
-Solution for $5 \phi+$ solution for $8 \varnothing$
.Solution for $6 \phi+$ solution for 7ϕ
.This is great! How to manage this process in general?

Dynamic Programming (DP)

.Powerful technique for optimization problems with

- Optimal sub-structure: optimal solution to a larger problem contains the optimal solutions to smaller ones
- Overlapping sub-problems
-General process for developing a DP solution
- Define sub-problems
- Identify recurrence relations among sub-problems
- Find a good order to solve the sub-problems, save their solutions, and finally solve the original problem
- Top-down recursion with memoization: larger problems \rightarrow related smaller problems
- Bottom-up iteration: smaller problems \rightarrow larger problems

$$
c(i, j)= \begin{cases}0 & \text { if } j=0 \\ \frac{j}{d_{1}} & \text { if } i=1 \\ \infty \quad \text { skip coin } \quad \text { use coin } \mathrm{i} & \text { if } j<0 \\ \min \left(c(i-1, j), 1+c\left(i, j-d_{i}\right)\right) & \text { otherwise }\end{cases}
$$

Given a new coin i, what's the fewest coins required to make j in change?

$c[i, j]=$ min. number of "coins" to make j change with coins $1 . . i$

Making Change

$c[i, j]=\min$. number of coins to make j change with coins $1 . . i$.

Making Change

How does one compute $c[2,2]$?

Making Change

How does one compute $c[2,2]$?

Making Change

How does one compute $\mathrm{c}[2,3]$?

Making Change

Making Change

Amount	0	1	2		3			4		5			7
senine $=1$	0	1	2					4		5			7
seon=2	0	1	1					2		3			
shum $=4$								+					
limnah=7													

Making Change

Amount	0	1	2	3	4	5	6	7
senine $=1$	0	1	2	3	4	5	6	7
seon $=2$	0	1	1	2	2	3	3	4
shum $=4$	0	1	1	2	1	2	2	3
limnah $=7$	0	1	1	2	1	2	2	1

