
Creating Abstract Data Types
(ADTs)

CS 121: Data Structures

START RECORDING

Outline

• Attendance quiz

• Overview of creating abstract data types (ADTs)

• Point charges

• Turtle graphics

• Complex numbers

Attendance Quiz

Attendance Quiz: Using ADTs
• Scan the QR code, or find today’s attendance

quiz under the “Quizzes” tab on Canvas

• Password: to be announced in class

public class Picture

 Picture(String filename) create a picture from a file

 Picture(int w, int h) create a blank w-by-h picture

 int width() width of the picture

 int height() height of the picture

Color get(int col, int row) the color of pixel (col, row)

 void set(int col, int row, Color c) set the color of pixel (col, row) to c

 void show() display the image in a window

 void save(String filename) save the picture to a file

public class Color

 Color(int r, int g, int b)

 int getRed() red intensity

 int getGreen() green intensity

 int getBlue() blue intensity

 Color brighter() brighter version of this color

 Color darker() darker version of this color

 String toString() string representation of this color

boolean equals(Color c) is this color the same as c's ?

Attendance Quiz: Using ADTs
• Write your name

• Using the Color and Picture ADTs below, implement a program
Pic.java that will display this 2x2 pixel image:

Index 0 1

0

1

public class Picture

 Picture(String filename) create a picture from a file

 Picture(int w, int h) create a blank w-by-h picture

 int width() width of the picture

 int height() height of the picture

Color get(int col, int row) the color of pixel (col, row)

 void set(int col, int row, Color c) set the color of pixel (col, row) to c

 void show() display the image in a window

 void save(String filename) save the picture to a file

public class Color

 Color(int r, int g, int b)

 int getRed() red intensity

 int getGreen() green intensity

 int getBlue() blue intensity

 Color brighter() brighter version of this color

 Color darker() darker version of this color

 String toString() string representation of this color

boolean equals(Color c) is this color the same as c's ?

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

9. Creating Data Types

Section 3.2

http://introcs.cs.princeton.edu

9. Creating Data Types

•Overview

•Point charges

•Turtle graphics

•Complex numbers

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.9.A.CreatingDTs.Overview

graphics, sound, and image I/O

text I/O

Basic building blocks for programming

9

any program you might want to write

objects

functions and modules

arrays

conditionals and loops

Math

assignment statementsprimitive data types

Ability to bring life

to your own

abstractions

Object-oriented programming (OOP)

10

Object-oriented programming (OOP).

• Create your own data types.

• Use them in your programs (manipulate objects).

An abstract data type is a data type whose representation is hidden from the client.

Impact: We can use ADTs without knowing implementation details.

• Previous lecture: how to write client programs for several useful ADTs

• This lecture: how to implement your own ADTs

data type set of values examples of operations

Color three 8-bit integers get red component, brighten

Picture 2D array of colors get/set color of pixel

String sequence of characters length, substring, compare

An object holds a data type value.

Variable names refer to objects.

Examples

C A T A G C G C

Implementing a data type

11

To create a data type, your code must:

• Define the set of values (instance variables).

• Implement operations on those values (methods).

• Create and initialize new objects (constructors).

Instance variables

• Declarations associate variable names with types.

• Set of type values is "set of values".

Methods

• Like static methods.

• Can refer to instance variables.

Constructors

• Like a method with the same name as the type.

• No return type declaration.

• Invoked by new, returns object of the type.

In Java, a data-type
implementation is
known as a class.

instance variables

constructors

methods

test client

A Java class

12

Anatomy of a Class

public class Charge

{

 private final double rx, ry; // position

 private final double q; // charge value

 public Charge(double x0, double y0, double q0)

 {

 rx = x0;

 ry = y0;

 q = q0;

 }

 public double potentialAt(double x, double y)

 {

 double k = 8.99e09;

 double dx = x - rx;

 double dy = y - ry;

 return k * q / Math.sqrt(dx*dx + dy*dy);

 }

 public String toString()

 { return q + " at " + "(" + rx + ", " + ry + ")"; }

 public static void main(String[] args)

 {

 Charge c = new Charge(.72, .31, 21.3);

 StdOut.println(c);

 StdOut.printf("%6.2e\n", c.potentialAt(.42, .71));

 }

}

text file named

Charge.java

instance variables

constructor

methods

test client

% java Charge

21.3 at (0.72, 0.31)

3.61e+11

not “static”

static method

(familiar)

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.9.A.CreatingDTs.Overview

9. Creating Data Types

•Overview

•Point charges

•Turtle graphics

•Complex numbers

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.9.B.CreatingDTs.Charges

ADT for point charges

15

public class Charge

 Charge(double x0, double y0, double q0)

 double potentialAt(double x, double y) electric potential at (x, y) due to charge

 String toString() string representation of this charge

API (operations)

Values

An ADT allows us to write Java programs that manipulate point charges.

A point charge is an idealized model of a particle that has an electric charge.

examples

position (x, y) (.53, .63) (.13, .94)

electrical charge 20.1 81.9

http://en.wikipedia.org/wiki/Electric_charge

• (rx, ry)

16

Crash course on electric potential

Note: Similar laws hold in many other situations.

Electric potential is a measure of the effect of a point charge on its surroundings.

• It increases in proportion to the charge value.

• It decreases in proportion to the inverse of the distance from the charge (2D).

Mathematically,

• Suppose a point charge c is located at (rx, ry) and has charge q.

• Let r be the distance between (x, y) and (rx, ry)

• Let Vc (x,y) be the potential at (x, y) due to c.

• Then where k = 8.99×109 is a normalizing factor.

Q. What happens when multiple charges are present?

A. The potential at a point is the sum of the potentials due to the individual charges.

Example. N-body (3D) is an inverse square law.

Vc(x, y) = k
q
r

• (x, y)

r

Boston Museum of Science,

Theater of Electricity

Point charge implementation: Test client

public static void main(String[] args)

{

 Charge c = new Charge(.72, .31, 20.1);

 StdOut.println(c);

 StdOut.printf("%6.2e\n", c.potentialAt(.42, .71));

}

18

% java Charge

20.1 at (0.72, 0.31)

3.61e+11

What we expect, once the implementation is done.

Best practice. Begin by implementing a simple test client.

• (.72, . 31)

• (.42, . 71)

.5

Y =
�

(Y_ � _)� + (Y` � `)�

=
�

.�� + .�� = .�

instance variables

constructors

methods

test client

=J(.��, .��) = �. � ��
��.�
.�

= �.� � ����

Vc(x, y) = k
q
r

Reminder: automatically invokes c.toString()

Point charge implementation: Instance variables

public class Charge

{

 private final double rx, ry;

 private final double q;

...

}

19

Instance variables define data-type values.

Values

examples

position (x, y) (.53, .63) (.13, .94)

electrical charge 20.1 81.9

Modifiers control access.

• private denies clients access and
therefore makes data type abstract.

• final disallows any change in value and
documents that data type is immutable.

stay tuned

Key to OOP. Each object has instance-variable values.

instance variables
constructors

methods

test client

Point charge implementation: Constructor

public class Charge

{

...

 public Charge(double x0, double y0, double q0)

 {

 rx = x0;

 ry = y0;

 q = q0;

 }

...

}

20

Constructors create and initialize new objects.
instance variables

constructors

methods

test client

Clients use new to invoke constructors.

• Pass arguments as in a method call.

• Return value is reference to new object.

Possible memory representation of 
Charge c = new Charge(.72, .31, 20.1);

x .72 .31 20.1

c
x

a memory address

references to instance variables, which
are not declared within the constructor

Point charge implementation: Methods

public class Charge

{ 
 ...

 public double potentialAt(double x, double y)

 {

 double k = 8.99e09;

 double dx = x - rx;

 double dy = y - ry;

 return k * q / Math.sqrt(dx*dx + dy*dy);

 }

 public String toString()

 { return q + " at " + "(" + rx + ", " + ry + ")"; }

 ...

}

21

Methods define data-type operations (implement APIs).
instance variables

constructors

methods

test client

public class Charge

 Charge(double x0, double y0, double q0)

 double potentialAt(double x, double y) electric potential at (x, y) due to charge

 String toString() string representation of this charge

API

Key to OOP. An instance variable
reference in an instance method
refers to the value for the object
that was used to invoke the method.

Vc(x, y) = k
q
r

22

Point charge implementation

public class Charge

{

 private final double rx, ry; // position

 private final double q; // charge value

 public Charge(double x0, double y0, double q0)

 {

 rx = x0;

 ry = y0;

 q = q0;

 }

 public double potentialAt(double x, double y)

 {

 double k = 8.99e09;

 double dx = x - rx;

 double dy = y - ry;

 return k * q / Math.sqrt(dx*dx + dy*dy);

 }

 public String toString()

 { return q + " at " + "(" + rx + ", " + ry + ")"; }

 public static void main(String[] args)

 {

 Charge c = new Charge(.72, .31, 20.1);

 StdOut.println(c);

 StdOut.printf("%6.2e\n", c.potentialAt(.42, .71));

 }

}

text file named

Charge.java

instance variables

constructor

methods

test client

% java Charge

20.1 at (0.72, 0.31)

3.61e+11

Point charge client: Potential visualization (helper methods)

23

Convert potential values to a color.

• Convert V to an 8-bit integer.

• Use grayscale.

Read point charges from StdIn.

• Uses Charge like any other type.

• Returns an array of Charges.

public static Color toColor(double V)

{

 V = 128 + V / 2.0e10;

 int t;

 if (V > 255) t = 255;

 else if (V >= 0) t = (int) V;

 else t = 0;

 return new Color(t, t, t);

}

public static Charge[] readCharges()

{

 int N = StdIn.readInt();

 Charge[] a = new Charge[N];

 for (int i = 0; i < N; i++)

 {

 double x0 = StdIn.readDouble();

 double y0 = StdIn.readDouble();

 double q0 = StdIn.readDouble();

 a[i] = new Charge(x0, y0, q0);

 }

 return a;

}

V

t 0 1 ... 37 38 39 ... 128 ... 254 255

Point charge client: Potential visualization

24

import java.awt.Color;

public class Potential

{

 public static Charge[] readCharges()

 { // See previous slide. }

 public static Color toColor()

 { // See previous slide. }

 public static void main(String[] args)

 {

 Charge[] a = readCharges();

 int SIZE = 800;

 Picture pic = new Picture(SIZE, SIZE);

 for (int col = 0; col < SIZE; col++)

 for (int row = 0; row < SIZE; row++)

 {

 double V = 0.0;

 for (int k = 0; k < a.length; k++)

 {

 double x = 1.0 * col / SIZE;

 double y = 1.0 * row / SIZE;

 V += a[k].potentialAt(x, y);

 }

 pic.set(col, SIZE-1-row, toColor(V));

 }

 pic.show();

 }

}

% more charges3.txt

3

.51 .63 -100

.50 .50 40

.50 .72 20

% java Potential < charges3.txt

Potential visualization I

25

% more charges9.txt

9

.51 .63 -100

.50 .50 40

.50 .72 20

.33 .33 5

.20 .20 -10

.70 .70 10

.82 .72 20

.85 .23 30

.90 .12 -50

% java Potential < charges9.txt

Potential visualization II: A moving charge

26

% more charges9.txt

9

.51 .63 -100

.50 .50 40

.50 .72 20

.33 .33 5

.20 .20 -10

.70 .70 10

.82 .72 20

.85 .23 30

.90 .12 -50

% java PotentialWithMovingCharge < charges9.txt

Potential visualization III: Discontinuous color map

27

public static Color toColor(double V)

{

 V = 128 + V / 2.0e10;

 int t = 0;

 if (V > 255) t = 255;

 else if (V >= 0) t = (int) V;

 t = t*37 % 255

 return new Color(t, t, t);

}

V

t 0 1 2 3 4 5 6 7 8 9 ...

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.9.B.CreatingDTs.Charges

9. Creating Data Types

•Overview

•Point charges

•Turtle graphics

•Complex numbers

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.9.C.CreatingDTs.Turtles

ADT for turtle graphics

30

public class Turtle

 Turtle(double x0, double y0, double q0)

 void turnLeft(double delta) rotate delta degrees counterclockwise

 void goForward(double step) move distance step, drawing a line

API (operations)

Values

An ADT allows us to write Java programs that manipulate turtles.

A turtle is an idealized model of a plotting device.

position (x, y) (.5, .5) (.25, .75) (.22, .12)

orientation 90° 135° 10°

Seymour Papert

1928−2016

Turtle graphics implementation: Test client

public static void main(String[] args)

{

 Turtle turtle = new Turtle(0.0, 0.0, 0.0);

 turtle.goForward(1.0);

 turtle.turnLeft(120.0);

 turtle.goForward(1.0);

 turtle.turnLeft(120.0);

 turtle.goForward(1.0);

 turtle.turnLeft(120.0);

}

31

% java Turtle

What we expect, once the implementation is done.

Best practice. Begin by implementing a simple test client.
instance variables

constructors

methods

test client

Note: Client drew triangle

without computing √3

Turtle implementation: Instance variables and constructor

32

Instance variables define data-type values.
instance variables
constructor

methods

test clientpublic class Turtle

{

 private double x, y;

 private double angle;

 public Turtle(double x0, double y0, double a0)

 {

 x = x0;

 y = y0;

 angle = a0;

 }

...

}

instance variables
are not final

Constructors create and initialize new objects.

Turtle implementation: Methods

public class Turtle

{

 ...

 public void turnLeft(double delta)

 { angle += delta; }

 public void goForward(double d)

 {

 double oldx = x;

 double oldy = y;

 x += d * Math.cos(Math.toRadians(angle));

 y += d * Math.sin(Math.toRadians(angle));

 StdDraw.line(oldx, oldy, x, y);

 }

 ...

}

33

Methods define data-type operations (implement APIs).
instance variables

constructors

methods

test client

API
public class Turtle

 Turtle(double x0, double y0, double q0)

 void turnLeft(double delta)

 void goForward(double step)

(x0, y0)

(x0 + d cos α, y0 + d sin α)
d

d cos α

d sin α
α

34

Turtle implementation

public class Turtle

{

 private double x, y;

 private double angle;

 public Turtle(double x0, double y0, double a0)

 {

 x = x0;

 y = y0;

 angle = a0;

 }

 public void turnLeft(double delta)

 { angle += delta; }

 public void goForward(double d)

 {

 double oldx = x;

 double oldy = y;

 x += d * Math.cos(Math.toRadians(angle));

 y += d * Math.sin(Math.toRadians(angle));

 StdDraw.line(oldx, oldy, x, y);

 }

 public static void main(String[] args)

 {

 Turtle turtle = new Turtle(0.0, 0.0, 0.0);

 turtle.goForward(1.0); turtle.turnLeft(120.0);

 turtle.goForward(1.0); turtle.turnLeft(120.0);

 turtle.goForward(1.0); turtle.turnLeft(120.0);

 }

}

text file named

Turtle.java

instance variables

constructor

methods

test client

% java Turtle

Turtle client: N-gon

35

public class Ngon

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 double angle = 360.0 / N;

 double step = Math.sin(Math.toRadians(angle/2.0));

 Turtle turtle = new Turtle(0.5, 0, angle/2.0);

 for (int i = 0; i < N; i++)

 {

 turtle.goForward(step);

 turtle.turnLeft(angle);

 }

 }

}

% java Ngon 7

% java Ngon 3

% java Ngon 1440

% java Spiral 7 1.2

public class Spiral

{

 public static void main(String[] args)

 {

 int N = Integer.parseInt(args[0]);

 double decay = Double.parseDouble(args[1]);

 double angle = 360.0 / N;

 double step = Math.sin(Math.toRadians(angle/2.0));

 Turtle turtle = new Turtle(0.5, 0, angle/2.0);

 for (int i = 0; i < 10 * N; i++)

 {

 step /= decay;

 turtle.goForward(step);

 turtle.turnLeft(angle);

 }

 }

}

Turtle client: Spira Mirabilis

36

% java Spiral 1440 1.0004

% java Spiral 3 1.2

37

Spira Mirabilis in the wild

Q. Fix the serious bug in this code:

Pop quiz 1 on OOP

38

public class Turtle

{

 private double x, y;

 private double angle;

 public Turtle(double x0, double y0, double a0)

 {

 double x = x0;

 double y = y0;

 double angle = a0;

 }

...

}

public class Turtle

{

 private double x, y;

 private double angle;

 public Turtle(double x0, double y0, double a0)

 {

 double x = x0;

 double y = y0;

 double angle = a0;

 }

...

}

Q. Fix the serious bug in this code:

Pop quiz 1 on OOP

39

A. Remove type declarations.

They create local variables,
which are different from the
instance variables!

Object-oriented programmers pledge. "I will not shadow instance variables"

Every programmer makes this mistake,
and it is a difficult one to detect.

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://web.media.mit.edu/~papert/

 http://en.wikipedia.org/wiki/Logarithmic_spiral

 http://en.wikipedia.org/wiki/Logarithmic_spiral#/media/File:Nautilus_Cutaway_with_Logarithmic_Spiral.png

 http://en.wikipedia.org/wiki/File:Low_pressure_system_over_Iceland.jpg

CS.9.C.CreatingDTs.Turtles

9. Creating Data Types

•Overview

•Point charges

•Turtle graphics

•Complex numbers

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.9.D.CreatingDTs.Mandelbrot

Crash course in complex numbers

42

A complex number is a number of the form a + bi where a and b are real and .P �
�

��

Complex numbers are a quintessential mathematical
abstraction that have been used for centuries to give insight
into real-world problems not easily addressed otherwise.

A. L. Cauchy

1789−1857

Leonhard Euler

1707−1783

To perform algebraic operations on complex numbers, use real
algebra, replace i 2 by −1 and collect terms.

• Addition example: (3 + 4i) + (−2 + 3i) = 1 + 7i .

• Multiplication example: (3 + 4i) x (−2 + 3i) = −18 + i .

Applications: Signal processing, control theory, quantum mechanics, analysis of algorithms...

The magnitude or absolute value of a complex number a + bi is . |H + IP| =
�

H� + I�

Example: | 3 + 4i | = 5

ADT for complex numbers

43

public class Complex

 Complex(double real, double imag)

 Complex plus(Complex b) sum of this number and b

 Complex times(Complex b) product of this number and b

 double abs() magnitude

 String toString() string representation

API (operations)

Values

An ADT allows us to write Java programs that manipulate complex numbers.

A complex number is a number of the form a + bi where a and b are real and .

complex number 3 + 4i −2 + 2i

real part 3.0 −2.0

imaginary part 4.0 2.0

P �
�

��

Complex number data type implementation: Test client

public static void main(String[] args)

{

 Complex a = new Complex(3.0, 4.0);

 Complex b = new Complex(-2.0, 3.0);

 StdOut.println("a = " + a);

 StdOut.println("b = " + b);

 StdOut.println("a * b = " + a.times(b));

}

44

% java Complex

a = 3.0 + 4.0i

b = -2.0 + 3.0i

a * b = -18.0 + 1.0i

What we expect, once the implementation is done.

Best practice. Begin by implementing a simple test client.
instance variables

constructors

methods

test client

Complex number data type implementation: Instance variables and constructor

45

Instance variables define data-type values.
instance variables
constructor

methods

test clientpublic class Complex

{

 private final double re;

 private final double im;

 public Complex(double real, double imag)

 {

 re = real;

 im = imag;

 }

...

}

instance variables
are final

Constructors create and initialize new objects.

Values

complex number 3 + 4i −2 + 2i

real part 3.0 −2.0

imaginary part 4.0 2.0

Complex number data type implementation: Methods

46

public class Complex

{

 ...

 public Complex plus(Complex b)

 {

 double real = re + b.re;

 double imag = im + b.im;

 return new Complex(real, imag);

 }

 public Complex times(Complex b)

 {

 double real = re * b.re - im * b.im;

 double imag = re * b.im + im * b.re;

 return new Complex(real, imag);

 }

 public double abs()

 { return Math.sqrt(re*re + im*im); }

 public String toString() 
 { return re + " + " + im + "i"; }

 ...

}

Methods define data-type operations (implement APIs).
instance variables

constructors

methods

test client

API
public class Complex

 Complex(double real, double imag)

 Complex plus(Complex b) sum of this number and b

 Complex times(Complex b) product of this number and b

 double abs() magnitude

 String toString() string representation

a = v + wi

b = x + yi

a � b = vx + vyi + wxi + wyi2

= vx � wy + (vy + wx)i

might also write "this.re"

or use Complex a = this

Java keyword "this" is a
reference to "this object" and
is implicit when an instance

variable is directly referenced

47

Complex number data type implementation

public class Complex

{

 private final double re;

 private final double im;

 public Complex(double real, double imag)

 { re = real; im = imag; }

 public Complex plus(Complex b)

 {

 double real = re + b.re;

 double imag = im + b.im;

 return new Complex(real, imag);

 }

 public Complex times(Complex b)

 {

 double real = re * b.re - im * b.im;

 double imag = re * b.im + im * b.re;

 return new Complex(real, imag);

 }

 public double abs()

 { return Math.sqrt(re*re + im*im); }

 public String toString() 
 { return re + " + " + im + "i"; }

 public static void main(String[] args)

 {

 Complex a = new Complex(3.0, 4.0);

 Complex b = new Complex(-2.0, 3.0);

 StdOut.println("a = " + a);

 StdOut.println("b = " + b);

 StdOut.println("a * b = " + a.times(b));

 }

}

text file named

Complex.java

instance variables

constructor

methods

test client

% java Complex

a = 3.0 + 4.0i

b = -2.0 + 3.0i

a * b = -18.0 + 1.0i

The Mandelbrot set

48

The Mandelbrot set is a set of complex numbers.

• Represent each complex number x + yi by a
point (x, y) in the plane.

• If a point is in the set, we color it BLACK.

• If a point is not in the set, we color it WHITE.

Challenge

• No simple formula exists for testing whether
a number is in the set.

• Instead, the set is defined by an algorithm.

Examples

• In the set: −0.5 + 0i.

• Not in the set: 1 + i.

(1, 1)

(−0.5, 0)

B. Mandelbrot

1924−2010

Determining whether a point is in the Mandelbrot set

49

Is a complex number z0 in the set?

• Iterate zt+1 = (zt)2 + z0.

• If |zt | diverges to infinity, z0 is not in the set.

• If not, z0 is in the set.

t zt

0 −1/2 + 0i

1 −1/4 + 0i

2 −7/16 + 0i

3 −79/256 + 0i

4 −26527/65536 + 0i

always between −1/2 and 0

z = −1/2 + 0i is in the set

t zt

0 1 + i

1 1 + 3i

2 −7 + 7i

3 1 − 97i

4 −9407 − 193i

diverges to infinity

z = 1 + i is not in the set

(1+i)2 + (1+i) = 1 + 2i + i2 + 1 + i = 1+3i

(1+3i)2 + (1+i) = 1 + 6i + 9i2 + 1 + i = −7+7i

(−0.5, 0)

Plotting the Mandelbrot set

50

Practical issues

• Cannot plot infinitely many points.

• Cannot iterate infinitely many times.

Approximate solution for first issue

• Sample from an N-by-N grid of points in the plane.

• Zoom in to see more detail (stay tuned!).

Approximate solution for second issue

• Fact: if | zt | > 2 for any t, then z is not in the set.

• Pseudo-fact: if | z255 | ≤ 2 then z is "likely" in the set.

Important note: Solutions
imply significant computation.

(−0.5, 0)

Complex number client: Mandelbrot set visualization (helper method)

51

Mandelbrot function of a complex number.

• Returns WHITE if the number is not in the set.

• Returns BLACK if the number is (probably) in the set.

public static Color mand(Complex z0)

{

 Complex z = z0;

 for (int t = 0; t < 255; t++)

 {

 if (z.abs() > 2.0) return Color.WHITE;

 z = z.times(z);

 z = z.plus(z0);

 }

 return Color.BLACK;

}

For a more dramatic picture,

 return new Color(255-t, 255-t, 255-t)

or colors picked from a color table.

% java Mandelbrot –.5 0 2 512% java Mandelbrot –.5 0 2 256% java Mandelbrot –.5 0 2 128% java Mandelbrot –.5 0 2 64% java Mandelbrot –.5 0 2 32

Complex number client: Mandelbrot set visualization

52

import java.awt.Color;

public class Mandelbrot

{

 public static Color mand(Complex z0)

 { // See previous slide. }

 public static void main(String[] args)

 {

 double xc = Double.parseDouble(args[0]);

 double yc = Double.parseDouble(args[1]);

 double size = Double.parseDouble(args[2]);

 int N = Integer.parseInt(args[3]);

 Picture pic = new Picture(N, N);

 for (int col = 0; col < N; col++)

 for (int row = 0; row < N; row++)

 {

 double x0 = xc - size/2 + size*col/N;

 double y0 = yc - size/2 + size*row/N;

 Complex z0 = new Complex(x0, y0);

 Color color = mand(z0);

 pic.set(col, N-1-row, color);

 }

 pic.show();

 }

}

scale to screen
coordinates

(0, 0) is upper
left corner

53

Mandelbrot Set

% java GrayscaleMandelbrot –.5 0 2 % java GrayscaleMandelbrot .1045 -.637 .01

54

Mandelbrot Set

% java ColorMandelbrot –.5 0 2 < mandel.txt

color map

–1.5 0 2

–1.5 0 .002

55

56

Mandelbrot Set

(-1.5, -1)

57

OOP summary

Object-oriented programming (OOP)

• Create your own data types (sets of values and ops on them).

• Use them in your programs (manipulate objects).

OOP helps us simulate the physical world

• Java objects model real-world objects.

• Not always easy to make model reflect reality.

• Examples: charged particle, color, sound, genome….

OOP helps us extend the Java language

• Java doesn't have a data type for every possible application.

• Data types enable us to add our own abstractions.

• Examples: complex, vector, polynomial, matrix, picture....
T A G A T G T G C T A G C

graphics, sound, and image I/O

text I/O

You have come a long way

58

any program you might want to write

objects

functions and modules

arrays

conditionals and loops

Math

assignment statementsprimitive data types

public class HelloWorld

{

 public static void main(String[] args)

 {

 System.out.println("Hello, World");

 }

}

T A G A T G T G C T A G C

Course goal. Open a whole new world of opportunity for you (programming). ✓

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://en.wikipedia.org/wiki/Leonhard_Euler#/media/File:Leonhard_Euler.jpg

 http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy

 http://upload.wikimedia.org/wikipedia/commons/e/e9/Benoit_Mandelbrot_mg_1804-d.jpg

 http://upload.wikimedia.org/wikipedia/commons/f/fc/Mandel_zoom_08_satellite_antenna.jpg

 http://upload.wikimedia.org/wikipedia/commons/1/18/Mandelpart2.jpg

 http://upload.wikimedia.org/wikipedia/commons/f/fb/Mandel_zoom_13_satellite_seehorse_tail_with_julia_island.jpg

 http://upload.wikimedia.org/wikipedia/commons/4/44/Mandelbrot_set_à_la_Pop_Art_-_Wacker_Art_Fractal_Generator.jpg

CS.9.D.CreatingDTs.Mandelbrot

C OMPUTER SC I EN CE

 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

9. Creating Data Types

Section 3.2

http://introcs.cs.princeton.edu

