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Sorting: Overview/Questions 

– What is sorting? 

– Why does sorting matter? 

– How is sorting accomplished? 

– Why are there different sorting algorithms? 

– On what basis should we compare 
algorithms? 
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Sorting 

Sorting 

Arranging items in a collection so that there is a 
natural ordering on one (or more) of the fields in 
the items. 

Sort Key 

The field (or fields) on which the ordering is 
based. 

Sorting Algorithms 

Algorithms that order the items in the collection 
based on the sort key. 
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Why Does Sorting Matter? 

We as humans have come to expect data to 
be presented with a natural ordering (e.g. 
alphabetic, numeric, etc.).  

 

Finding an item is much easier when the 
data is sorted. Why? 
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Why Does Sorting Matter? 

Sorting is an operation which takes up a lot of 
computer cycles.  

 

How many cycles?  

It depends: 

– How many items to be sorted 

– Choice of sorting algorithm 

 

What does this mean to the user? 
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How would you sort it? 

Suppose you have these 7 cards, and you 
need to put them in ascending order: 

 

 
 

Describe your process in pseudo code. 

Take a minute or two to write it down. 
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Find the card with the minimum value: 

 

 

 

Put it in the “ordered” set: 

Sorting Example (1/7) 

X 
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Find the card with the minimum value: 

 

 

 

Put it in the “ordered” set: 

Sorting Example (2/7) 

X X 
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Find the card with the minimum value: 

 

 

 

Put it in the “ordered” set: 

Sorting Example (3/7) 

X X X 
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Find the card with the minimum value: 

 

 

 

Put it in the “ordered” set: 

Sorting Example (4/7) 

X X X X 
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Find the card with the minimum value: 

 

 

 

Put it in the “ordered” set: 

Sorting Example (5/7) 

X X X X X 
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Find the card with the minimum value: 

 

 

 

Put it in the “ordered” set: 

Sorting Example (6/7) 

X X X X X X 
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Find the card with the minimum value: 

 

 

 

Put it in the “ordered” set: 

Sorting Example (7/7) 

X X X X X X X 
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Sorting: pseudo code 

Given a set of values, put in ascending order: 

Start a new pile for the “sorted” list  

While length of “original” list > 0: 

  Find minimum, copy to “sorted” list 

 Remove value from the “original” list 

This is called a selection sort.  
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Selection Sort 

A slight adjustment to this manual approach 
does away with the need to duplicate space: 

– As you cross a value off the original list, a free 
space opens up. 

– Instead of writing the value found on a 
second list, exchange it with the value 
currently in the position where the crossed-off 
item should go. 
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Unsorted portion 

Find the card with the minimum value: 

 

 

 

Exchange it with “first” unsorted item: 

Selection Sort Example 
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Unsorted portion 

Find the card with the minimum value: 

 

 

 

Exchange it with “first” unsorted item: 

Selection Sort Example 
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Unsorted portion 

Find the card with the minimum value: 

 

 

 

Exchange it with “first” unsorted item: 

Selection Sort Example 
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Unsorted portion 

Find the card with the minimum value: 

 

 

 

Exchange it with “first” unsorted item: 

Selection Sort Example 
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Which item comes first? 

Think about writing the code for this.  
How do you find the first element in a list? 
 

min = first item in list 

Go through each item in the list: 

 if item < min: 

  min = item 
 
How many comparisons does it take to find min? 
Consider a list of size 10. 
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Calculating the Running Time 

We measure the running time of an algorithm by 
the number of operations it requires.  

 

Most of the work of sorting is making comparisons 
between pairs of items to see which comes first.  

 

Thus our basic question: 

How many comparisons must be done? 
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Calculating the Running Time 

How can we determine the number of steps 
required to sort a list of n items? 

– Selection Sort requires n comparisons to find the next 
unsorted item.*  

– This process must be repeated n times, to sort all 
items on the list.*  

Thus, we can say that it will require n passes 
through n items to complete the sort. 

 n times n = n2 steps 

We call Selection Sort an O(n2) algorithm. 
 

* A mathematical simplification has been made. An explanation follows for those who care.  
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* A Mathematical Footnote 

Of course, we don’t really need to always compare every item in the list. Once 
part of the list is sorted, we can ignore that part and do comparisons against 
the unsorted part of the list. So for a list of size n, we really need to make: 

        comparisons. 

 

This series simplifies to: 

 

       comparisons. 

 

This is indeed less then n2. However, as n becomes sufficiently large, it is the 
n2 part which dominates the equation’s result. We make a simplification in 
notation and say that these algorithms are “on the order of magnitude of” n2. 

 

Hence the notation of O(n2) algorithm. 
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* A Mathematical Footnote 

Actually, the running time is (n2-n)/2, but as n becomes sufficiently large, the n2 part of this 

equation dominates the outcome. Hence the notation of O(n2) algorithm. 
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Another Algorithm: Bubble Sort 

Bubble Sort uses the same strategy: 
– Find the next item. 

– Put it into its proper place. 

But uses a different scheme for finding the next 
item: 
– Starting with the last list element, compare successive 

pairs of elements, swapping whenever the bottom 
element of the pair is smaller than the one above it. 

 

The minimum “bubbles up” to the top (front) of 
the list. 
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Swapped 

Bubblesort Example (1/6) 

First pass: comparing last two items: 

 
 

 

Swap if needed: 
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Swapped 

Bubblesort Example (2/6) 

First pass: compare next pair of items: 

 
 

 

Swap if needed: 
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Swapped 

Bubblesort Example (3/6) 

First pass: compare next pair of items: 

 
 

 

Swap if needed: 
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Swapped 

Bubblesort Example (4/6) 

First pass: compare next pair of items: 

 
 

 

Swap if needed: 
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Swapped 

Bubblesort Example (5/6) 

First pass: compare next pair of items: 

 
 

 

Swap if needed: 
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Swapped 

Bubblesort Example (6/6) 

First pass: compare next pair of items: 

 
 

 

Swap if needed: 
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Unsorted 

Bubblesort Example 

After first pass:  

We have 1 sorted item and 6 unsorted items:  

 
 

 

 

Notice: all other items are slightly “more sorted” 
then they were at the start. 
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After second pass:  

We have 2 sorted items and 5 unsorted items: 

 
 

 

 

Notice: all other items are slightly “more sorted” 
then they were at the start. 

Unsorted 

Bubblesort Example 
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After third pass:  

We have 3 sorted items and 4 unsorted items: 

 
 

 

 

Notice: all other items are slightly “more sorted” 
then they were at the start. 

Unsorted 

Bubblesort Example 
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After fourth pass:  

We have 4 sorted items and 3 unsorted items: 

 
 

 

 

Notice: all other items are slightly “more sorted” 
then they were at the start. 

Unsorted 

Bubblesort Example 
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After fifth pass:  

We have 5 sorted items and 2 unsorted items: 

 
 

 

 

No, the last two items are not sorted yet! 

Why not? 

Unsorted 

Bubblesort Example 
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After sixth pass, all items have been sorted:  

 
 

 

 

Bubblesort Example 
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Calculating the Running Time 

How do we calculate the running time for Bubble 
Sort? Determine the number of comparisons.  

 

For a list of size n:  
– Bubble Sort will go through the list n times 

– Each time compare n adjacent pairs of numbers.* 

 

 n times n = n2 steps 

Bubble Sort is also an O(n2) algorithm. 
 

* A mathematical simplification has been made. See previous footnote. 
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A Different Approach to Sorting 

Selection Sort and Bubble Sort have the same 
basic strategy: 

– Find one item, and put it in place 

– Repeat 

 

How else might we approach this problem? 
Hint: it takes fewer comparisons to sort a smaller list.  

How many comparisons does it take to sort 2 items? 
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Quicksort: Divide and Conquer 

Quicksort uses a divide-and-conquer strategy. It is 
simpler and shorter to solve a smaller problem.  

Basic strategy:  

– Split the list based on a split value; put each item on 
a sub list (great then split or less than split). 

– Sort each sub list using the same approach  

– Continue splitting and sorting sub lists until we get  

 a list of length 1 (which is by definition sorted 

– Combine all of the sorted sub lists together to create 
the complete ordered list.  
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Less than Split value Greater than 

Quicksort Example 

Begin with complete set of cards: 

 

 
Split into two groups based on “less than 5” 
or “greater than 5”: 
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Less than 

Repeat quicksort on each sublist: 

 

 
Split into two groups based on “less than 3” 
or “greater than 3”: 

 

Split value Greater than 

Quicksort Example 
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Repeat quicksort on each sub list: 

 

 
 

Until we have sub lists of length 1: 

Quicksort Example 
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At the limit, we have this set of sublists: 

 

 

 

 

Finally, we combine into the complete, sorted list. 

Quicksort Example 
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Quicksort Algorithm 

Quicksort(list): 

 if length of list > 1 then  

  select splitVal 

 

  for each item in list: 

   if item < splitVal: 

    add item to lesser 

   if item > splitVal: 

    add item to greater 

  

 Quicksort(lesser) 

 Quicksort(greater) 

  

 list = lesser + splitVal + greater 
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Calculating the Running Time 

How do we calculate the running time for 
Quicksort?  

– Determine the number of comparisons.  

– Determine the number of time we split the list. 

 

Each time we want to split the list, we need to 
compare each item to the split value, and assign it 
to the correct sub-list.  

– For a list of size n, we have n comparisons per split.  
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How many splits? 
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Running Time: Quicksort 

How many times do we split a list of size n? 

We keep splitting (in half) until we reach 1. How 
many splits is that? 
For n = 2, splits = 1 

For n = 4, splits = 2 

For n = 8, splits = 3 

For n = 16, splits = 4 

For n = 32, splits = 5 

For n = 64, splits = 6 

 

What is the pattern here? 
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Running Time: Quicksort 

Pattern: Each time we double the length of the list 
(n), we increase the number of splits by 1.  

 

This is the opposite of the exponential relationship. 

Recall that:  

22 = 2*2 = 4 

23 = 2*2*2 = 8 

24 = 2*2*2*2 = 16 
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Recall: Logarithms 

The base-2 logarithm describes how many times 
we need to divide a value in half to obtain 1: 
log2(2) = 1 

log2(4) = 2 

log2(8) = 3 

log2(16) = 4 

log2(32) = 5 

 

log2(n) = x  

where x is the power to which we would raise 2 to 
obtain n: 

2x = n 
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Running Time: Quicksort 

Recall that for a list of size n:  

– We have n comparisons per split, and 

– We have log2(n) splits.  

 

Combining these, we can write 

 n times log2(n) = n* log2(n) steps 

Quicksort is an O(n* log2(n) ) algorithm*. 

 

n* log2(n) is always less than n2. 
 

*Average case running time based on optimal choice of split. What’s 
the worst case? 
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Running Time Comparison 
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Sorting Algorithm Demo 

A really cool graphical demo of different sorting 
algorithms running side-by-side: 
http://www.cs.clarku.edu/~jmagee/cs121/examples/sorting/sorts.html 

(with thanks to Penny Ellard for the original page) 

 

Also, check this out: 

http://www.sorting-algorithms.com/  
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Searching: Overview/Questions 

– What is searching? 

– Why does searching matter? 

– How is searching accomplished? 

– Why are there different searching algorithms? 

– On what basis should we compare 
algorithms? 

 

http://www.cs.clarku.edu/~jmagee/cs121/examples/sorting/sorts.html
http://www.cs.clarku.edu/~jmagee/cs121/examples/sorting/sorts.html
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
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Searching 

Searching 

Attempting to find an item in a collection. Note the 
possibility that an item might not be found. 

Search key 

The field (or fields) on which the search is based. 
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Example: Search Key 
Consider this list: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.patriots.com/team/ 
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Example: Search Key 

Now consider this list: 
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Example: Search Key 

 NFL uniform numbers follow a specific scheme to make 
search by number easy for TV announcers… 

– Numbers 1 to 19 are worn by quarterbacks, kickers, and punters. 

– Numbers 20 to 49 are worn by running backs, tight ends, cornerbacks and safeties. 

– Numbers 50 to 59 are worn by linebackers and offensive linemen. 

– Numbers 60 to 79 are worn by members of both the offensive line and defensive line. 

– Numbers 80 to 89 are worn by wide receivers and tight ends. 

– Numbers 90 to 99 are worn by linebackers and defensive linemen.  
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Why Does Searching Matter? 

Given a large enough set of data, it could take a 
long time to find something! 

 

Example: 

Consider a collection with 10,000,000 records 
(e.g. a phone book).  

How would you find what you’re looking for? 

 

Searching Algorithms 

Algorithms that traverse the collection in an 
attempt to find the desired item. 
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Why Does Searching Matter? 

Searching is an operation which can take a lot of 
computing cycles.  

 

How many cycles?  

It depends: 

– How many items in the collection  

– Choice of searching algorithm 

 

What does this mean to the user? 
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A Naïve Searching Algorithm 

While there are more items in the list: 

Look at the next item.  

Is this what you were looking for? 

If yes, all done. 

If no, take the next item. 

If you got here and didn’t find the item, then it 
must not be in the list. 

 

We call this Linear Search. 
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Linear Search 

Characteristics of the Linear Search: 

– Simple to implement. 

– It doesn’t matter if the collection is sorted. 

 

How many items do you need to look at to find 
what you’re looking for? 

– What if it is in the first position? 

– What if it is in the last position? 

– What if it is not found? 
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Calculating the Running Time 

How many steps are required to do a linear search 
through a list of n items? 

– If we check each one, it will take looking through n 
items to complete the search. 

– On average, we might expect to look at n/2 items on 
a given search.  

– If the item is not found, we will not discover that 
until the end of the list – after traversing all n items. 

 

We call Linear Search an O(n) algorithm. 
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Running Time Analysis 
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A Different Approach to Searching 

How else might we approach this problem? 

Hint: can we divide and conquer? 
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Binary Search 

Binary Search uses a divide-and-conquer strategy.  

It requires that the collection be sorted. 

Basic strategy:  

– Divide the list in half based on some mid point, to get 
two shorter lists (before and after mid point). 

– Compare the search key to the mid point. Does it 
come before or after the midpoint? Search the 
corresponding sub list. 

– Continue splitting and searching sub lists until we get 
a list of length 1:  

 either this is our item, or the item is not in the collection. 
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Calculating the Running Time 

How do we calculate the running time for 
Binary Search?  

– Determine the number of comparisons.  

– Determine the number of times we split the 
collection. 

 

Each time we want to split the list, we need 
to make one comparison (search item to 
mid point), proceed to search a sub-list.  
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Running Time: Binary Search 

How many times do we split a list of size n? 
We keep splitting (in half) until we reach 1. 
How many splits is that? 
For n = 2, splits = 1 
For n = 4, splits = 2 
For n = 8, splits = 3 
For n = 16, splits = 4 
For n = 32, splits = 5 
For n = 64, splits = 6 
 

Recall this is the log2(n) pattern.  
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Running Time: Binary Search 

Pattern: Each time we split the list in half, we have 
a list of length (n/2).  

 

The base-2 logarithm describes how many 
times we need to divide a value in half to 
obtain 1: 
log2(2) = 1 

log2(4) = 2 

log2(8) = 3 

log2(16) = 4 

log2(32) = 5 
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Running Time: Binary Search 

For a list of size n, we have log2(n) splits.  

 

Thus, Binary Search is an O(log2(n) ) algorithm. 

 

log2(n) is always less than n. 
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Running Time Analysis 

We can barely see the line for log2(n)! 
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Running Time Analysis 

Now we see log2(n)! Note: change of scale. 


