
1

1

John Magee
24 April 2012

CS121:

Sorting and Searching
Algorithms

2

Sorting: Overview/Questions

– What is sorting?

– Why does sorting matter?

– How is sorting accomplished?

– Why are there different sorting algorithms?

– On what basis should we compare
algorithms?

2

3

Sorting

Sorting

Arranging items in a collection so that there is a
natural ordering on one (or more) of the fields in
the items.

Sort Key

The field (or fields) on which the ordering is
based.

Sorting Algorithms

Algorithms that order the items in the collection
based on the sort key.

4

Why Does Sorting Matter?

We as humans have come to expect data to
be presented with a natural ordering (e.g.
alphabetic, numeric, etc.).

Finding an item is much easier when the
data is sorted. Why?

3

5

Why Does Sorting Matter?

Sorting is an operation which takes up a lot of
computer cycles.

How many cycles?

It depends:

– How many items to be sorted

– Choice of sorting algorithm

What does this mean to the user?

6

How would you sort it?

Suppose you have these 7 cards, and you
need to put them in ascending order:

Describe your process in pseudo code.

Take a minute or two to write it down.

4

7

Find the card with the minimum value:

Put it in the “ordered” set:

Sorting Example (1/7)

X

8

Find the card with the minimum value:

Put it in the “ordered” set:

Sorting Example (2/7)

X X

5

9

Find the card with the minimum value:

Put it in the “ordered” set:

Sorting Example (3/7)

X X X

10

Find the card with the minimum value:

Put it in the “ordered” set:

Sorting Example (4/7)

X X X X

6

11

Find the card with the minimum value:

Put it in the “ordered” set:

Sorting Example (5/7)

X X X X X

12

Find the card with the minimum value:

Put it in the “ordered” set:

Sorting Example (6/7)

X X X X X X

7

13

Find the card with the minimum value:

Put it in the “ordered” set:

Sorting Example (7/7)

X X X X X X X

14

Sorting: pseudo code

Given a set of values, put in ascending order:

Start a new pile for the “sorted” list

While length of “original” list > 0:

 Find minimum, copy to “sorted” list

 Remove value from the “original” list

This is called a selection sort.

8

15

Selection Sort

A slight adjustment to this manual approach
does away with the need to duplicate space:

– As you cross a value off the original list, a free
space opens up.

– Instead of writing the value found on a
second list, exchange it with the value
currently in the position where the crossed-off
item should go.

16

Unsorted portion

Find the card with the minimum value:

Exchange it with “first” unsorted item:

Selection Sort Example

9

17

Unsorted portion

Find the card with the minimum value:

Exchange it with “first” unsorted item:

Selection Sort Example

18

Unsorted portion

Find the card with the minimum value:

Exchange it with “first” unsorted item:

Selection Sort Example

10

19

Unsorted portion

Find the card with the minimum value:

Exchange it with “first” unsorted item:

Selection Sort Example

20

Which item comes first?

Think about writing the code for this.
How do you find the first element in a list?

min = first item in list

Go through each item in the list:

 if item < min:

 min = item

How many comparisons does it take to find min?
Consider a list of size 10.

11

21

Calculating the Running Time

We measure the running time of an algorithm by
the number of operations it requires.

Most of the work of sorting is making comparisons
between pairs of items to see which comes first.

Thus our basic question:

How many comparisons must be done?

22

Calculating the Running Time

How can we determine the number of steps
required to sort a list of n items?

– Selection Sort requires n comparisons to find the next
unsorted item.*

– This process must be repeated n times, to sort all
items on the list.*

Thus, we can say that it will require n passes
through n items to complete the sort.

 n times n = n2 steps

We call Selection Sort an O(n2) algorithm.

* A mathematical simplification has been made. An explanation follows for those who care.

12

23

* A Mathematical Footnote

Of course, we don’t really need to always compare every item in the list. Once
part of the list is sorted, we can ignore that part and do comparisons against
the unsorted part of the list. So for a list of size n, we really need to make:

 comparisons.

This series simplifies to:

 comparisons.

This is indeed less then n2. However, as n becomes sufficiently large, it is the
n2 part which dominates the equation’s result. We make a simplification in
notation and say that these algorithms are “on the order of magnitude of” n2.

Hence the notation of O(n2) algorithm.

1...)2()1( nnn

22

)1(2 nnnn 




24

* A Mathematical Footnote

Actually, the running time is (n2-n)/2, but as n becomes sufficiently large, the n2 part of this

equation dominates the outcome. Hence the notation of O(n2) algorithm.

13

25

Another Algorithm: Bubble Sort

Bubble Sort uses the same strategy:
– Find the next item.

– Put it into its proper place.

But uses a different scheme for finding the next
item:
– Starting with the last list element, compare successive

pairs of elements, swapping whenever the bottom
element of the pair is smaller than the one above it.

The minimum “bubbles up” to the top (front) of
the list.

26

Swapped

Bubblesort Example (1/6)

First pass: comparing last two items:

Swap if needed:

14

27

Swapped

Bubblesort Example (2/6)

First pass: compare next pair of items:

Swap if needed:

28

Swapped

Bubblesort Example (3/6)

First pass: compare next pair of items:

Swap if needed:

15

29

Swapped

Bubblesort Example (4/6)

First pass: compare next pair of items:

Swap if needed:

30

Swapped

Bubblesort Example (5/6)

First pass: compare next pair of items:

Swap if needed:

16

31

Swapped

Bubblesort Example (6/6)

First pass: compare next pair of items:

Swap if needed:

32

Unsorted

Bubblesort Example

After first pass:

We have 1 sorted item and 6 unsorted items:

Notice: all other items are slightly “more sorted”
then they were at the start.

17

33

After second pass:

We have 2 sorted items and 5 unsorted items:

Notice: all other items are slightly “more sorted”
then they were at the start.

Unsorted

Bubblesort Example

34

After third pass:

We have 3 sorted items and 4 unsorted items:

Notice: all other items are slightly “more sorted”
then they were at the start.

Unsorted

Bubblesort Example

18

35

After fourth pass:

We have 4 sorted items and 3 unsorted items:

Notice: all other items are slightly “more sorted”
then they were at the start.

Unsorted

Bubblesort Example

36

After fifth pass:

We have 5 sorted items and 2 unsorted items:

No, the last two items are not sorted yet!

Why not?

Unsorted

Bubblesort Example

19

37

After sixth pass, all items have been sorted:

Bubblesort Example

38

Calculating the Running Time

How do we calculate the running time for Bubble
Sort? Determine the number of comparisons.

For a list of size n:
– Bubble Sort will go through the list n times

– Each time compare n adjacent pairs of numbers.*

 n times n = n2 steps

Bubble Sort is also an O(n2) algorithm.

* A mathematical simplification has been made. See previous footnote.

20

39

A Different Approach to Sorting

Selection Sort and Bubble Sort have the same
basic strategy:

– Find one item, and put it in place

– Repeat

How else might we approach this problem?
Hint: it takes fewer comparisons to sort a smaller list.

How many comparisons does it take to sort 2 items?

40

Quicksort: Divide and Conquer

Quicksort uses a divide-and-conquer strategy. It is
simpler and shorter to solve a smaller problem.

Basic strategy:

– Split the list based on a split value; put each item on
a sub list (great then split or less than split).

– Sort each sub list using the same approach

– Continue splitting and sorting sub lists until we get

 a list of length 1 (which is by definition sorted

– Combine all of the sorted sub lists together to create
the complete ordered list.

21

41

Less than Split value Greater than

Quicksort Example

Begin with complete set of cards:

Split into two groups based on “less than 5”
or “greater than 5”:

42

Less than

Repeat quicksort on each sublist:

Split into two groups based on “less than 3”
or “greater than 3”:

Split value Greater than

Quicksort Example

22

43

Repeat quicksort on each sub list:

Until we have sub lists of length 1:

Quicksort Example

44

At the limit, we have this set of sublists:

Finally, we combine into the complete, sorted list.

Quicksort Example

23

45

Quicksort Algorithm

Quicksort(list):

 if length of list > 1 then

 select splitVal

 for each item in list:

 if item < splitVal:

 add item to lesser

 if item > splitVal:

 add item to greater

 Quicksort(lesser)

 Quicksort(greater)

 list = lesser + splitVal + greater

46

Calculating the Running Time

How do we calculate the running time for
Quicksort?

– Determine the number of comparisons.

– Determine the number of time we split the list.

Each time we want to split the list, we need to
compare each item to the split value, and assign it
to the correct sub-list.

– For a list of size n, we have n comparisons per split.

24

47

How many splits?

48

Running Time: Quicksort

How many times do we split a list of size n?

We keep splitting (in half) until we reach 1. How
many splits is that?
For n = 2, splits = 1

For n = 4, splits = 2

For n = 8, splits = 3

For n = 16, splits = 4

For n = 32, splits = 5

For n = 64, splits = 6

What is the pattern here?

25

49

Running Time: Quicksort

Pattern: Each time we double the length of the list
(n), we increase the number of splits by 1.

This is the opposite of the exponential relationship.

Recall that:

22 = 2*2 = 4

23 = 2*2*2 = 8

24 = 2*2*2*2 = 16

50

Recall: Logarithms

The base-2 logarithm describes how many times
we need to divide a value in half to obtain 1:
log2(2) = 1

log2(4) = 2

log2(8) = 3

log2(16) = 4

log2(32) = 5

log2(n) = x

where x is the power to which we would raise 2 to
obtain n:

2x = n

26

51

Running Time: Quicksort

Recall that for a list of size n:

– We have n comparisons per split, and

– We have log2(n) splits.

Combining these, we can write

 n times log2(n) = n* log2(n) steps

Quicksort is an O(n* log2(n)) algorithm*.

n* log2(n) is always less than n2.

*Average case running time based on optimal choice of split. What’s
the worst case?

52

Running Time Comparison

27

53

Sorting Algorithm Demo

A really cool graphical demo of different sorting
algorithms running side-by-side:
http://www.cs.clarku.edu/~jmagee/cs121/examples/sorting/sorts.html

(with thanks to Penny Ellard for the original page)

Also, check this out:

http://www.sorting-algorithms.com/

54

Searching: Overview/Questions

– What is searching?

– Why does searching matter?

– How is searching accomplished?

– Why are there different searching algorithms?

– On what basis should we compare
algorithms?

http://www.cs.clarku.edu/~jmagee/cs121/examples/sorting/sorts.html
http://www.cs.clarku.edu/~jmagee/cs121/examples/sorting/sorts.html
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/

28

55

Searching

Searching

Attempting to find an item in a collection. Note the
possibility that an item might not be found.

Search key

The field (or fields) on which the search is based.

56

Example: Search Key
Consider this list:

http://www.patriots.com/team/

29

57

Example: Search Key

Now consider this list:

58

Example: Search Key

 NFL uniform numbers follow a specific scheme to make
search by number easy for TV announcers…

– Numbers 1 to 19 are worn by quarterbacks, kickers, and punters.

– Numbers 20 to 49 are worn by running backs, tight ends, cornerbacks and safeties.

– Numbers 50 to 59 are worn by linebackers and offensive linemen.

– Numbers 60 to 79 are worn by members of both the offensive line and defensive line.

– Numbers 80 to 89 are worn by wide receivers and tight ends.

– Numbers 90 to 99 are worn by linebackers and defensive linemen.

30

59

Why Does Searching Matter?

Given a large enough set of data, it could take a
long time to find something!

Example:

Consider a collection with 10,000,000 records
(e.g. a phone book).

How would you find what you’re looking for?

Searching Algorithms

Algorithms that traverse the collection in an
attempt to find the desired item.

60

Why Does Searching Matter?

Searching is an operation which can take a lot of
computing cycles.

How many cycles?

It depends:

– How many items in the collection

– Choice of searching algorithm

What does this mean to the user?

31

61

A Naïve Searching Algorithm

While there are more items in the list:

Look at the next item.

Is this what you were looking for?

If yes, all done.

If no, take the next item.

If you got here and didn’t find the item, then it
must not be in the list.

We call this Linear Search.

62

Linear Search

Characteristics of the Linear Search:

– Simple to implement.

– It doesn’t matter if the collection is sorted.

How many items do you need to look at to find
what you’re looking for?

– What if it is in the first position?

– What if it is in the last position?

– What if it is not found?

32

63

Calculating the Running Time

How many steps are required to do a linear search
through a list of n items?

– If we check each one, it will take looking through n
items to complete the search.

– On average, we might expect to look at n/2 items on
a given search.

– If the item is not found, we will not discover that
until the end of the list – after traversing all n items.

We call Linear Search an O(n) algorithm.

64

Running Time Analysis

33

65

A Different Approach to Searching

How else might we approach this problem?

Hint: can we divide and conquer?

66

Binary Search

Binary Search uses a divide-and-conquer strategy.

It requires that the collection be sorted.

Basic strategy:

– Divide the list in half based on some mid point, to get
two shorter lists (before and after mid point).

– Compare the search key to the mid point. Does it
come before or after the midpoint? Search the
corresponding sub list.

– Continue splitting and searching sub lists until we get
a list of length 1:

 either this is our item, or the item is not in the collection.

34

67

Calculating the Running Time

How do we calculate the running time for
Binary Search?

– Determine the number of comparisons.

– Determine the number of times we split the
collection.

Each time we want to split the list, we need
to make one comparison (search item to
mid point), proceed to search a sub-list.

68

Running Time: Binary Search

How many times do we split a list of size n?
We keep splitting (in half) until we reach 1.
How many splits is that?
For n = 2, splits = 1
For n = 4, splits = 2
For n = 8, splits = 3
For n = 16, splits = 4
For n = 32, splits = 5
For n = 64, splits = 6

Recall this is the log2(n) pattern.

35

69

Running Time: Binary Search

Pattern: Each time we split the list in half, we have
a list of length (n/2).

The base-2 logarithm describes how many
times we need to divide a value in half to
obtain 1:
log2(2) = 1

log2(4) = 2

log2(8) = 3

log2(16) = 4

log2(32) = 5

70

Running Time: Binary Search

For a list of size n, we have log2(n) splits.

Thus, Binary Search is an O(log2(n)) algorithm.

log2(n) is always less than n.

36

71

Running Time Analysis

We can barely see the line for log2(n)!

72

Running Time Analysis

Now we see log2(n)! Note: change of scale.

