Cache Memories

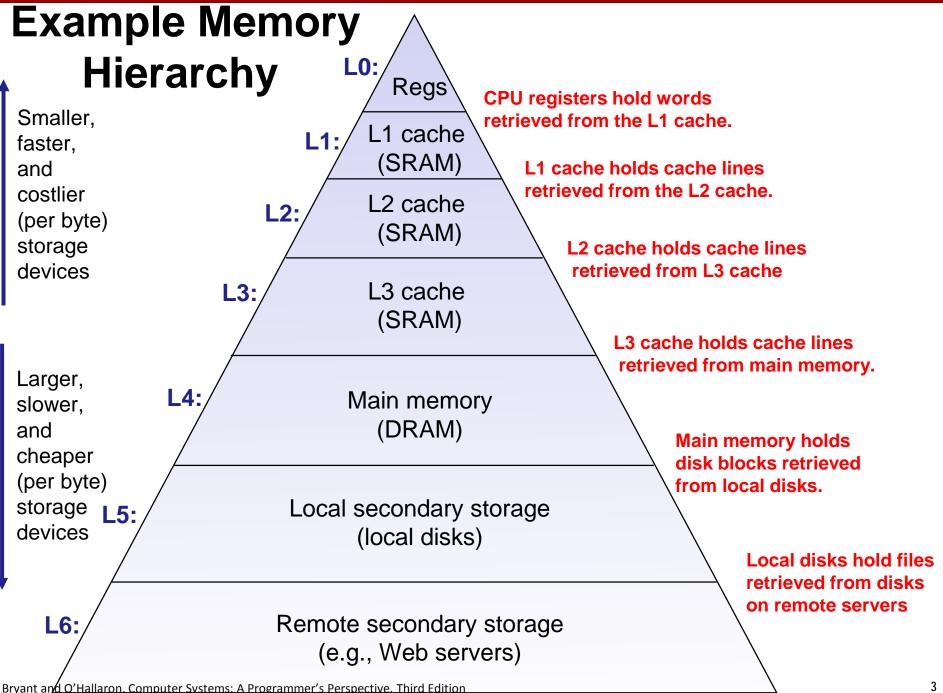
CS140 – Assembly Language and Computer Organization

Slides by:

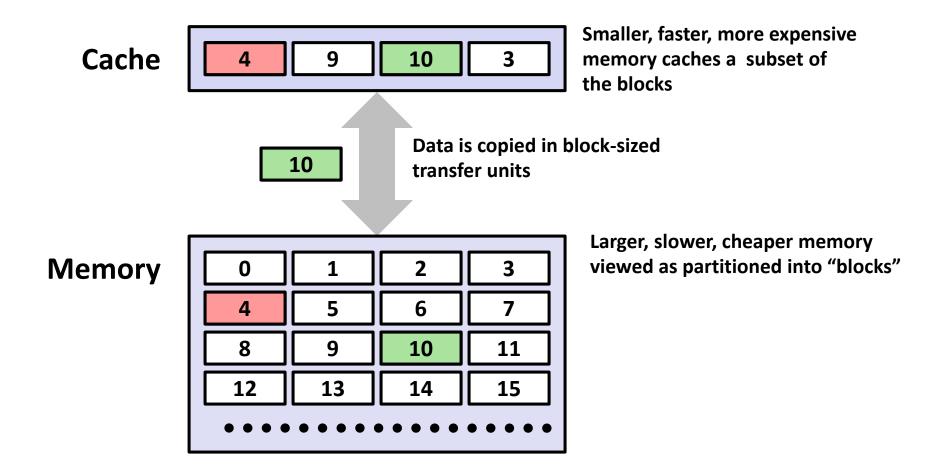
Randal E. Bryant and David R. O'Hallaron

Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

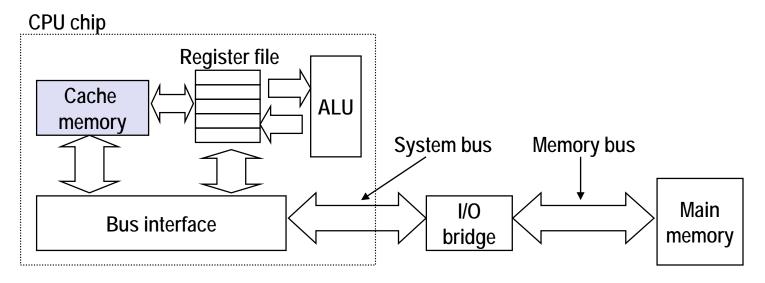


General Cache Concept

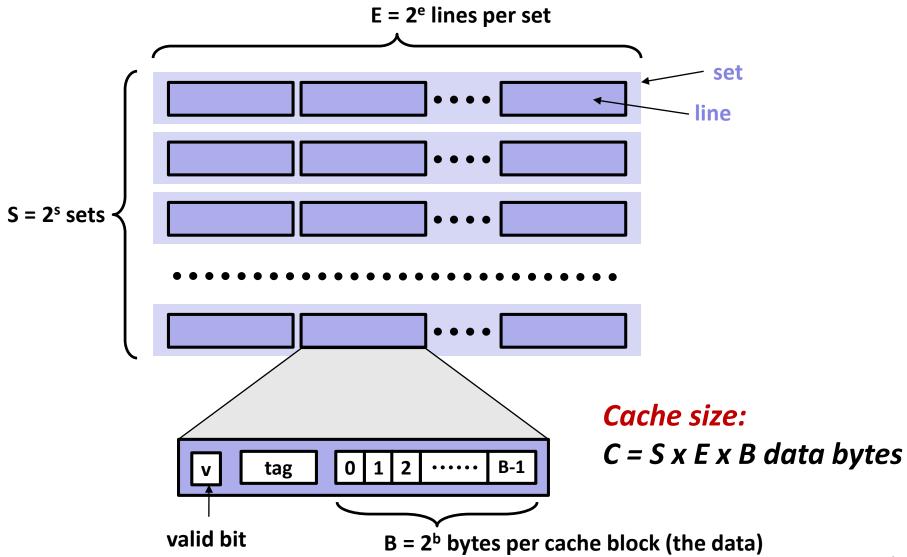


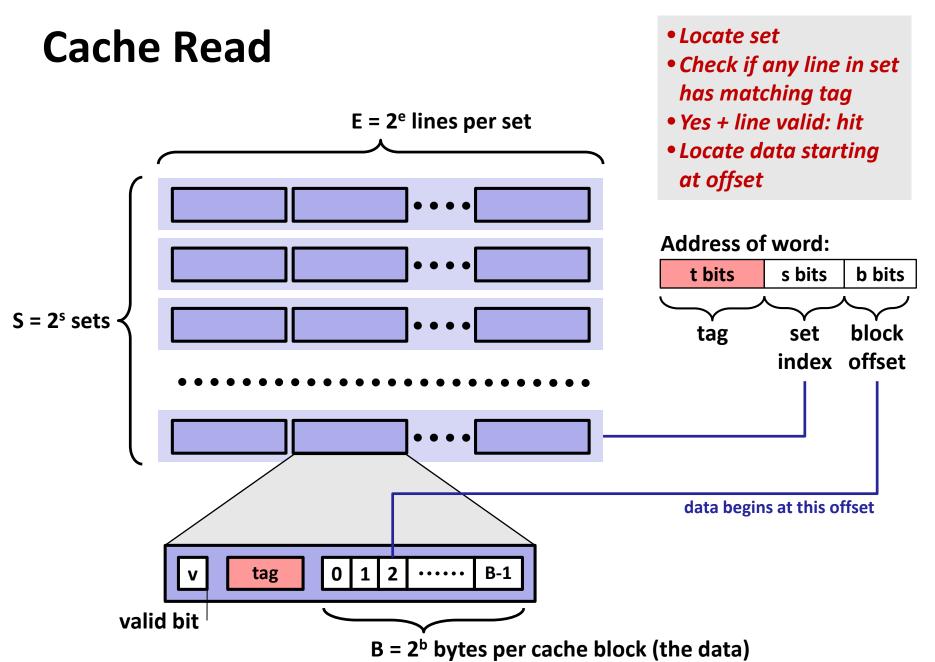
Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in cache
- Typical system structure:



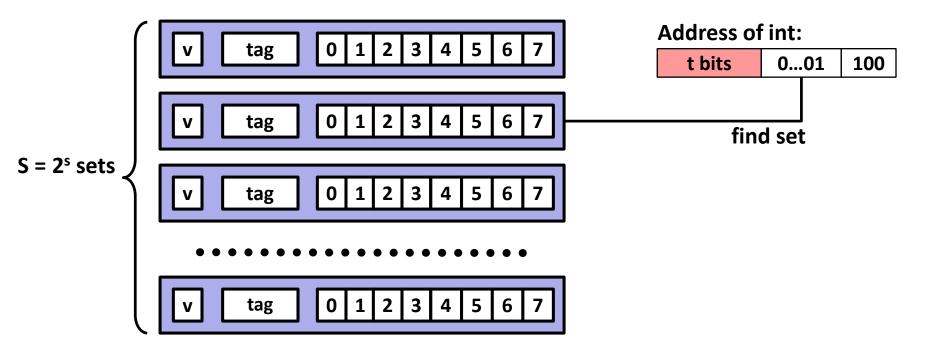
General Cache Organization (S, E, B)





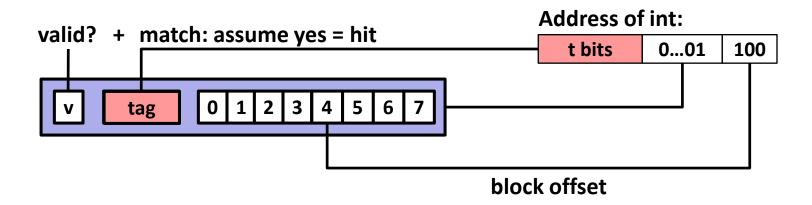
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes



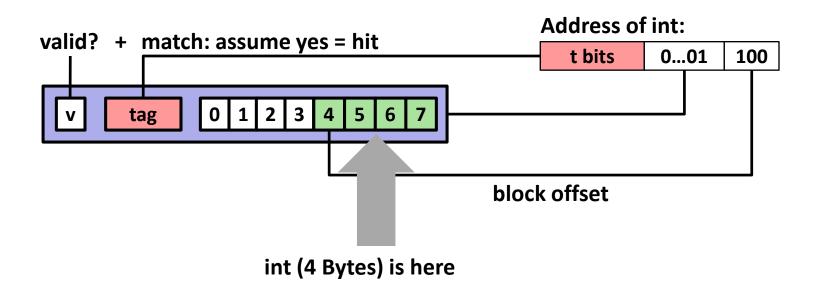
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes



Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes



If tag doesn't match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t=1	s=2	b=1
Х	XX	X

M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set

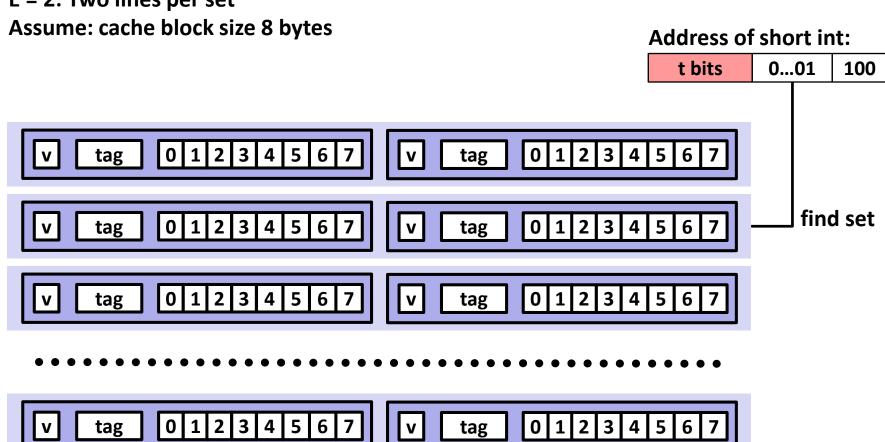
Address trace (reads, one byte per read):

0	$[0000_{2}],$	miss
1	[0 <u>00</u> 1 ₂],	hit
7	$[0\overline{11}1_{2}],$	miss
8	$[1000_{2}],$	miss
0	[0000]	miss

	V	Tag	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

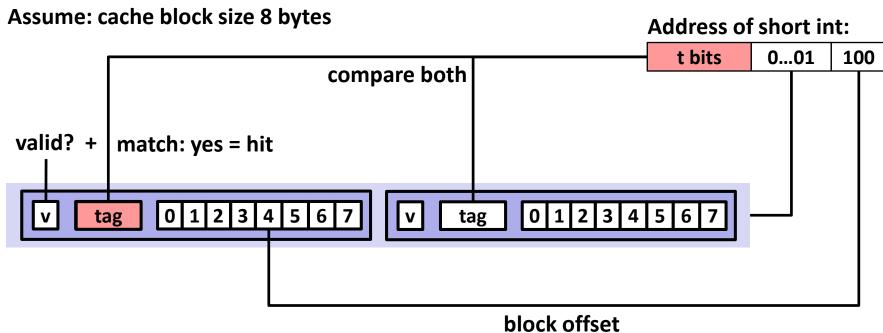
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set



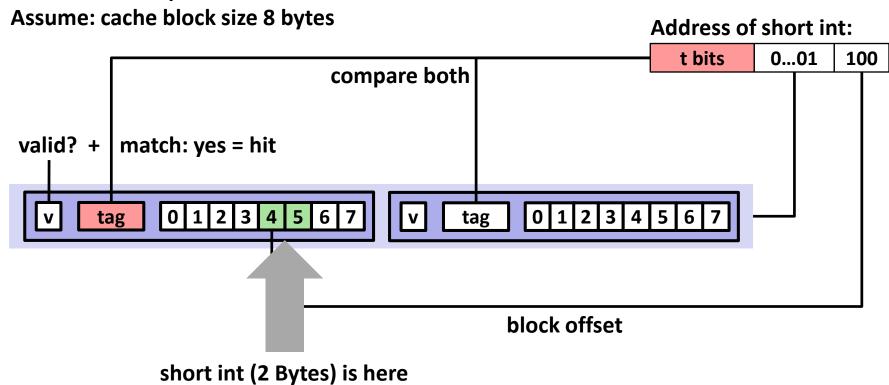
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set



E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set



No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

t=2	s=1	b=1
XX	X	Х

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0	$[00\underline{0}0_{2}],$	miss
1	$[0001_{2}],$	hit
7	$[01\underline{1}1_2],$	miss
8	$[10\underline{0}0_{2}],$	miss
0	[00002]	hit

	V	Tag	Block
Set 0	1	00	M[0-1]
	1	10	M[8-9]
Set 1	1	01	M[6-7]
	0		

What about writes?

Multiple copies of data exist:

L1, L2, L3, Main Memory, Disk

What to do on a write-hit?

- Write-through (write immediately to memory)
- Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)

What to do on a write-miss?

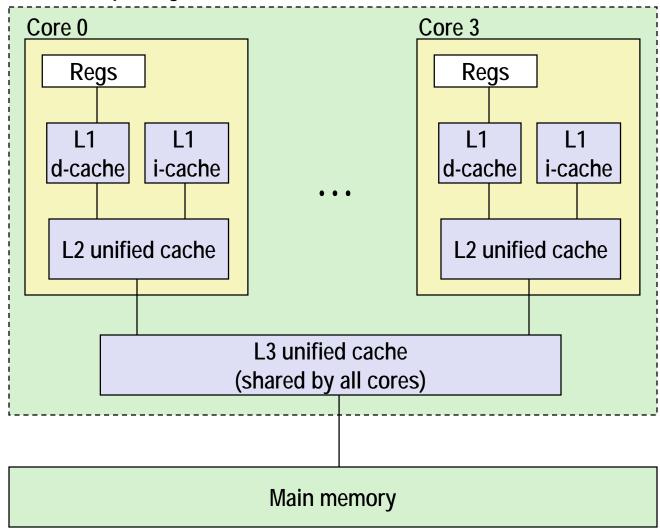
- Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
- No-write-allocate (writes straight to memory, does not load into cache)

Typical

- Write-through + No-write-allocate
- Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

Processor package



L1 i-cache and d-cache:

32 KB, 8-way, Access: 4 cycles

L2 unified cache:

256 KB, 8-way, Access: 10 cycles

L3 unified cache:

8 MB, 16-way, Access: 40-75 cycles

Block size: 64 bytes for

all caches.

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 = 1 hit rate
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 4 clock cycle for L1
 - 10 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Let's think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

■ This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "elems" elements of
      array "data" with stride of "stride", using
      using 4x4 loop unrolling.
*/
int test(int elems, int stride) {
  long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
  long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
  long length = elems, limit = length - sx4;
  /* Combine 4 elements at a time */
  for (i = 0; i < limit; i += sx4) {
    acc0 = acc0 + data[i];
    acc1 = acc1 + data[i+stride];
    acc2 = acc2 + data[i+sx2];
    acc3 = acc3 + data[i+sx3];
  /* Finish any remaining elements */
  for (; i < length; i++) {
    acc0 = acc0 + data[i];
  return ((acc0 + acc1) + (acc2 + acc3));
                                        mountain/mountain.c
```

Call test() with many combinations of elems and stride.

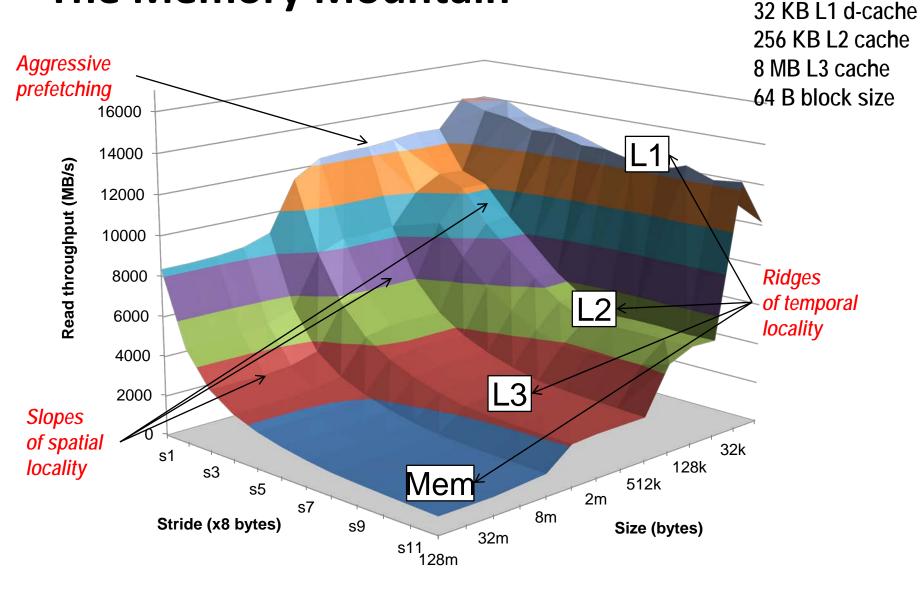
For each elems and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test()
 again and measure
 the read
 throughput(MB/s)

Core i7 Haswell

2.1 GHz

The Memory Mountain



Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Matrix Multiplication Example

Description:

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

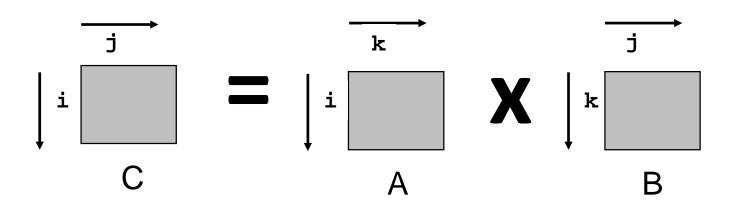
Miss Rate Analysis for Matrix Multiply

Assume:

- Block size = 32B (big enough for four doubles)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop



Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- if block size (B) > sizeof(a_{ii}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ii}) / B

Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}
    matmult/mm.c</pre>
```

```
Inner loop:

(*,j)

(i,*)

B

C

†

Row-wise Column-
wise
```

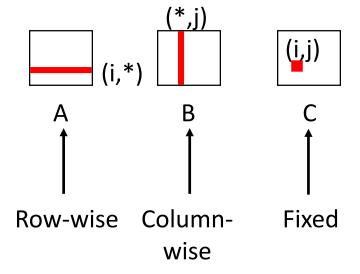
Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}
    matmult/mm.c</pre>
```

Inner loop:



Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>	
0.25	1.0	0.0	

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```

Inner loop: (i,k) A B C T Fixed Row-wise Row-wise

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```

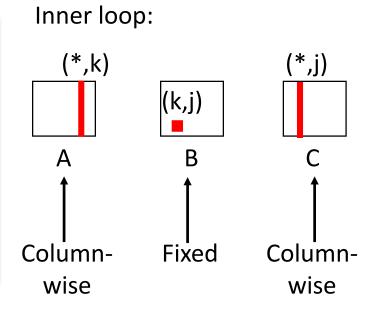
Inner loop: (i,k) A B C ↑ Fixed Row-wise Row-wise Row-wise

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```

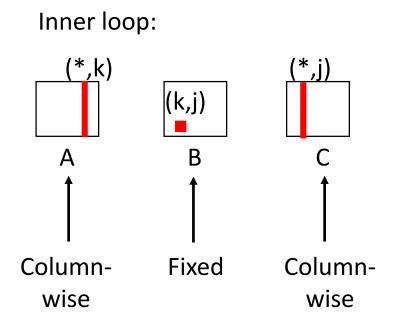


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}
    matmult/mm.c</pre>
```



Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

35

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
  }
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}
</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = **1.25**

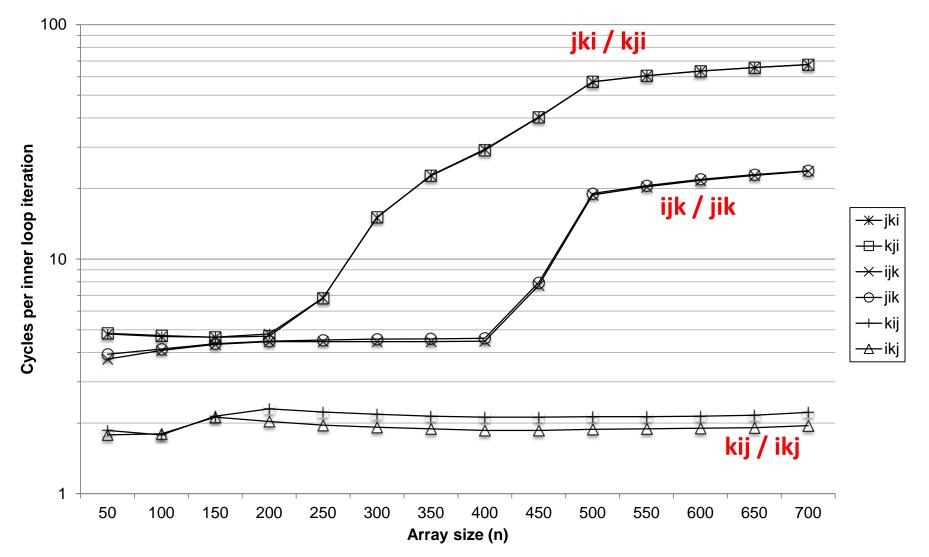
kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

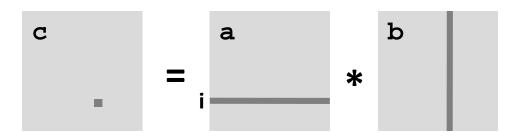
Core i7 Matrix Multiply Performance



Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication



n

Cache Miss Analysis

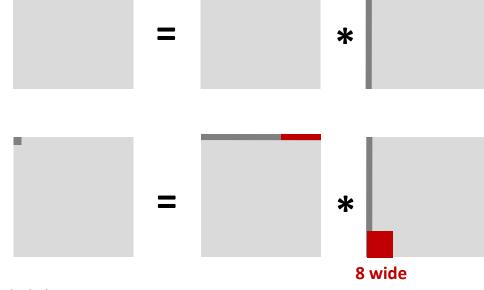
Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

First iteration:

• n/8 + n = 9n/8 misses

Afterwards in cache: (schematic)



n

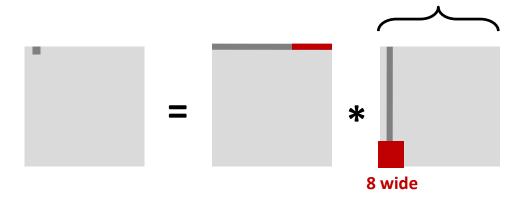
Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

Second iteration:

Again: n/8 + n = 9n/8 misses

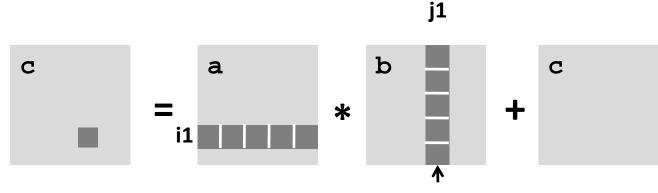


Total misses:

41

Blocked Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
       for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i++)
                      for (j1 = j; j1 < j+B; j++)
                          for (k1 = k; k1 < k+B; k++)
                             c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
                                                         matmult/bmm.c
```



n/B blocks

42

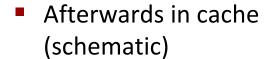
Cache Miss Analysis

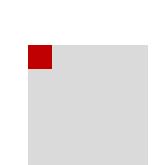
Assume:

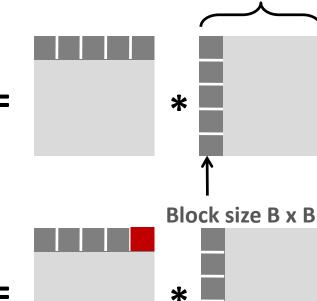
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C</p>

First (block) iteration:

- B²/8 misses for each block
- 2n/B * B²/8 = nB/4 (omitting matrix c)







n/B blocks

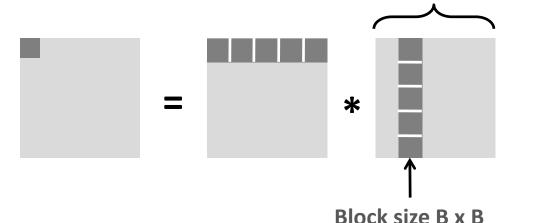
Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C</p>

Second (block) iteration:

- Same as first iteration
- 2n/B * B²/8 = nB/4



Total misses:

• $nB/4 * (n/B)^2 = n^3/(4B)$

Blocking Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³
- Suggest largest possible block size B, but limit 3B² < C!
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

Cache Summary

Cache memories can have significant performance impact

- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it's read from memory.