
1

Computer Systems:
A Programmer’s Perspective

aka: CS:APP
 Five realities
 How CSAPP fits into the CS curriculum

These slides courtesy of Randal E. Bryant and David R.
O'Hallaron, Carnegie Mellon University. http://csapp.cs.cmu.edu

2

CSAPP Theme:
Abstraction Is Good But Don’t Forget
Reality
 Most CS courses emphasize abstraction
 Abstract data types
 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs
 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers
 Able to find and eliminate bugs efficiently
 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & ECE
 Compilers, Operating Systems, Networks, Computer Architecture,

Embedded Systems

3

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:
 40000 * 40000 1600000000
 50000 * 50000 ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!
 Float’s:
 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

4

Code Security Example
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

5

Typical Usage
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}

6

Malicious Usage

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);
. . .

}

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

7

Carnegie Mellon

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations
 Integer operations satisfy “ring” properties
 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties
 Monotonicity, values of signs

 Observation
 Need to understand which abstractions apply in which contexts
 Important issues for compiler writers and serious application programmers

8

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly
 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs
 High-level language models break down

 Tuning program performance
 Understand optimizations done / not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Compiler has machine code as target
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice!

9

Carnegie Mellon

Assembly Code Example

 Time Stamp Counter
 Special 64-bit register in Intel-compatible machines
 Incremented every clock cycle
 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

10

Carnegie Mellon

Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility
 Inserts assembly code into machine code generated by

compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

Presenter
Presentation Notes
GCC Extended assembly syntaxasm(assembler syntax : output operands /*optional */ : input operands /* optional */ : list of clobbered registers /* optional */);

11

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded
 It must be allocated and managed
 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform
 Cache and virtual memory effects can greatly affect program performance
 Adapting program to characteristics of memory system can lead to major

speed improvements

12

Memory Referencing Bug Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) 3.14
fun(1) 3.14
fun(2) 3.1399998664856
fun(3) 2.00000061035156
fun(4) 3.14, then segmentation fault

 Result is architecture specific

13

Memory Referencing Bug Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) 3.14
fun(1) 3.14
fun(2) 3.1399998664856
fun(3) 2.00000061035156
fun(4) 3.14, then segmentation fault

Location accessed by
fun(i)

Explanation: Saved State 4
d7 ... d4 3
d3 ... d0 2
a[1] 1
a[0] 0

14

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler
 Action at a distance
 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby or ML
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors (e.g. Valgrind)

15

Memory System Performance Example

 Hierarchical memory organization
 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

16

The Memory Mountain

64
M

8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000

s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2

Size (bytes)

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

17

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!
 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written
 Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed
 How to measure program performance and identify bottlenecks
 How to improve performance without destroying code modularity and

generality

18

Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags
 Both implementations have exactly the same operations count (2n3)
 What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

19

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

20

Great Reality #5:
Computers do more than execute
programs
 They need to get data in and out
 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network
 Concurrent operations by autonomous processes
 Coping with unreliable media
 Cross platform compatibility
 Complex performance issues

21

CS:APP

 Topics will be Programmer-Centric
 Purpose is to show how by knowing more about the underlying system,

one can be more effective as a programmer
 Enable you to
 Write programs that are more reliable and efficient
 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers
 Not just a course for dedicated hackers
 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere

22

Textbooks

 Randal E. Bryant and David R. O’Hallaron,
 “Computer Systems: A Programmer’s Perspective, Third Edition”

(CS:APP3e), Prentice Hall
 http://csapp.cs.cmu.edu
 This book really matters for the course!
 How to solve labs
 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,
 “The C Programming Language, Second Edition”, Prentice Hall, 1988

	Computer Systems:�A Programmer’s Perspective��aka: CS:APP
	CSAPP Theme:�Abstraction Is Good But Don’t Forget Reality
	Great Reality #1: �Ints are not Integers, Floats are not Reals
	Code Security Example
	Typical Usage
	Malicious Usage
	Computer Arithmetic
	Great Reality #2: �You’ve Got to Know Assembly
	Assembly Code Example
	Code to Read Counter
	Great Reality #3: Memory Matters�Random Access Memory Is an Unphysical Abstraction
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory Referencing Errors
	Memory System Performance Example
	The Memory Mountain
	Great Reality #4: There’s more to performance than asymptotic complexity�
	Example Matrix Multiplication
	MMM Plot: Analysis
	Great Reality #5:�Computers do more than execute programs
	CS:APP
	Textbooks

