
1

Computer Systems:
A Programmer’s Perspective

aka: CS:APP
 Five realities
 How CSAPP fits into the CS curriculum

These slides courtesy of Randal E. Bryant and David R.
O'Hallaron, Carnegie Mellon University. http://csapp.cs.cmu.edu

2

CSAPP Theme:
Abstraction Is Good But Don’t Forget
Reality
 Most CS courses emphasize abstraction
 Abstract data types
 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs
 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers
 Able to find and eliminate bugs efficiently
 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & ECE
 Compilers, Operating Systems, Networks, Computer Architecture,

Embedded Systems

3

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:
 40000 * 40000 1600000000
 50000 * 50000 ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!
 Float’s:
 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

4

Code Security Example
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

5

Typical Usage
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}

6

Malicious Usage

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);
. . .

}

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

7

Carnegie Mellon

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations
 Integer operations satisfy “ring” properties
 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties
 Monotonicity, values of signs

 Observation
 Need to understand which abstractions apply in which contexts
 Important issues for compiler writers and serious application programmers

8

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly
 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs
 High-level language models break down

 Tuning program performance
 Understand optimizations done / not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Compiler has machine code as target
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice!

9

Carnegie Mellon

Assembly Code Example

 Time Stamp Counter
 Special 64-bit register in Intel-compatible machines
 Incremented every clock cycle
 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

10

Carnegie Mellon

Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility
 Inserts assembly code into machine code generated by

compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

Presenter
Presentation Notes
GCC Extended assembly syntax
asm(assembler syntax
 : output operands /*optional */
 : input operands /* optional */
 : list of clobbered registers /* optional */
);

11

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded
 It must be allocated and managed
 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform
 Cache and virtual memory effects can greatly affect program performance
 Adapting program to characteristics of memory system can lead to major

speed improvements

12

Memory Referencing Bug Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0)  3.14
fun(1)  3.14
fun(2)  3.1399998664856
fun(3)  2.00000061035156
fun(4)  3.14, then segmentation fault

 Result is architecture specific

13

Memory Referencing Bug Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0)  3.14
fun(1)  3.14
fun(2)  3.1399998664856
fun(3)  2.00000061035156
fun(4)  3.14, then segmentation fault

Location accessed by
fun(i)

Explanation: Saved State 4
d7 ... d4 3
d3 ... d0 2
a[1] 1
a[0] 0

14

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler
 Action at a distance
 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby or ML
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors (e.g. Valgrind)

15

Memory System Performance Example

 Hierarchical memory organization
 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

16

The Memory Mountain

64
M

8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000

s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2

Size (bytes)

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

17

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!
 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written
 Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed
 How to measure program performance and identify bottlenecks
 How to improve performance without destroying code modularity and

generality

18

Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags
 Both implementations have exactly the same operations count (2n3)
 What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

19

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

20

Great Reality #5:
Computers do more than execute
programs
 They need to get data in and out
 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network
 Concurrent operations by autonomous processes
 Coping with unreliable media
 Cross platform compatibility
 Complex performance issues

21

CS:APP

 Topics will be Programmer-Centric
 Purpose is to show how by knowing more about the underlying system,

one can be more effective as a programmer
 Enable you to
 Write programs that are more reliable and efficient
 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers
 Not just a course for dedicated hackers
 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere

22

Textbooks

 Randal E. Bryant and David R. O’Hallaron,
 “Computer Systems: A Programmer’s Perspective, Third Edition”

(CS:APP3e), Prentice Hall
 http://csapp.cs.cmu.edu
 This book really matters for the course!
 How to solve labs
 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,
 “The C Programming Language, Second Edition”, Prentice Hall, 1988

	Computer Systems:�A Programmer’s Perspective��aka: CS:APP
	CSAPP Theme:�Abstraction Is Good But Don’t Forget Reality
	Great Reality #1: �Ints are not Integers, Floats are not Reals
	Code Security Example
	Typical Usage
	Malicious Usage
	Computer Arithmetic
	Great Reality #2: �You’ve Got to Know Assembly
	Assembly Code Example
	Code to Read Counter
	Great Reality #3: Memory Matters�Random Access Memory Is an Unphysical Abstraction
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory Referencing Errors
	Memory System Performance Example
	The Memory Mountain
	Great Reality #4: There’s more to performance than asymptotic complexity�
	Example Matrix Multiplication
	MMM Plot: Analysis
	Great Reality #5:�Computers do more than execute programs
	CS:APP
	Textbooks

