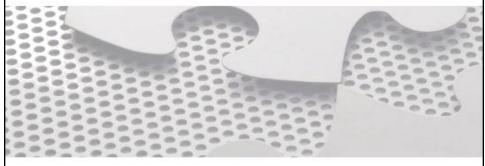
Programming Languages Third Edition



Chapter 12 Formal Semantics

Objectives

- Become familiar with a sample small language for the purpose of semantic specification
- Understand operational semantics
- · Understand denotational semantics
- Understand axiomatic semantics
- Become familiar with proofs of program correctness

Programming Languages, Third Edition

Introduction

- In previous chapters, we discussed semantics from an informal, or descriptive, point of view
 - Historically, this has been the usual approach
- There is a need for a more mathematical description of the behavior of programs and programming languages, to make the definition of a language so precise that:
 - Programs can be **proven** correct in a mathematical way
 - Translators can be validated to produce exactly the behavior described in the language definition

Programming Languages, Third Edition

3

Introduction (cont'd.)

- Developing such a mathematical system aids the designer in discovering inconsistencies and ambiguities
- There is no single accepted method for formally defining semantics
- Several methods differ in the formalisms used and the kinds of intended applications
- Formal semantic descriptions are more often supplied after the fact, and only for a portion of a language

Programming Languages, Third Edition

- Formal methods have begun to be used as part of the specification of complex software projects, including language translators
- Three principal methods to describe semantics formally:
 - Operational semantics
 - Denotational semantics
 - Axiomatic semantics

Programming Languages, Third Edition

5

Introduction (cont'd.)

- Operational semantics:
 - Defines a language by describing its actions in terms of the operators of an actual or hypothetical machine
 - Requires that the operations of the machine used in the description are also precisely defined
 - A mathematical model called a "reduction machine" is often used for this purpose (similar in spirit to the notion of a Turing machine)

Programming Languages, Third Edition

Denotational semantics:

- Uses mathematical functions on programs and program components to specify semantics
- Programs are translated into functions about which properties can be proved using standard mathematical theory of functions

Programming Languages, Third Edition

7

Introduction (cont'd.)

Axiomatic semantics:

- Applies mathematical logic to language definition
- Assertions, or predicates, are used to describe desired outcomes and initial assumptions for program
- Language constructs are associated with predicate transforms to create new assertions out of old ones
- Transformers can be used to prove that the desired outcome follows from the initial conditions
- Is a method aimed specifically at correctness proofs

Programming Languages, Third Edition

- All these methods are syntax-directed
 - Semantic definitions are based on a context-free grammar or Backus-Naur Form (BNF) rules
- Formal semantics must then define all properties of a language that are not specified by the BNF
 - Includes static properties such as static types and declaration before use
- Formal methods can describe both static and dynamic properties
- We will view semantics as everything not specified by the BNF

Programming Languages, Third Edition

9

Introduction (cont'd.)

- Two properties of a specification are essential:
 - Must be complete: every correct, terminating program must have associated semantics given by the rules
 - Must be consistent: the same program cannot be given two different, conflicting semantics
- Additionally, it is advantageous for the semantics to be minimal, or independent
 - No rule is derivable from the other rules

Programming Languages, Third Edition

- Formal specifications written in operational or denotational style have an additional useful property:
 - They can be translated relatively easily into working programs in a language suitable for prototyping, such as Prolog, ML, or Haskell

Programming Languages, Third Edition

11

A Sample Small Language

- The basic sample language to be used is a version of the integer expression language used in Ch. 6
- BNF rules for this language:

```
\begin{array}{lllll} expr & \rightarrow expr \ '+' \ term \ | \ expr \ '-' \ term \ | \ term \\ term & \rightarrow term \ '*' \ factor \ | \ factor \\ factor & \rightarrow \ '('expr \ ')' \ | \ number \\ number & \rightarrow number \ digit \ | \ digit \\ digit & \rightarrow \ '0' \ | \ '1' \ | \ '2' \ | \ '3' \ | \ '4' \ | \ '5' \ | \ '6' \ | \ '7' \ | \ '8' \ | \ '9' \end{array}
```

Figure 12.1 Basic sample language

Programming Languages, Third Edition

- This results in simple semantics:
 - The value of an expression is a complete representation of its meaning: 2 + 3 * 4 means 14
- Complexity will now be added to this language in stages
- In the first stage, we add variables, statements, and assignments
 - A program is a list of statements separated by semicolons
 - A statement is an assignment of an expression to an identifier

Programming Languages, Third Edition

13

A Sample Small Language (cont'd.)

```
factor \rightarrow `(`expr')` | number | identifier
program \rightarrow stmt-list
stmt-list \rightarrow stmt `;` stmt-list | stmt
stmt \rightarrow identifier `:=` expr
identifier \rightarrow identifier letter | letter
letter \rightarrow `a` | `b` | `c` | ... | `z`
```

Figure 12.2 First extension of the sample language

Programming Languages, Third Edition

- Semantics are now represented by a set of values corresponding to identifiers whose values have been defined, or bound, by assignments
- Example:

```
a := 2+3;
b := a*4;
a := b-5
```

- Results in bindings b=20 and a=15 when it finishes
- Set of values representing the semantics of the program is {a=15, b=20}

Programming Languages, Third Edition

15

A Sample Small Language (cont'd.)

- Such a set is essentially a function from identifiers to integer values, with all unassigned identifiers having a value undefined
 - This function is called an **environment**, denoted by:
 Env: Identifier → Integer ∪ {undef}
- Note that the Env function given by this example program can be defined as:

$$Env(I) = \begin{cases} 15 \text{ if } I = a \\ 20 \text{ if } I = b \\ \text{undef otherwise} \end{cases}$$

Programming Languages, Third Edition

- The operation of looking up the value of an identifier I in an environment Env is Env (I)
- Empty environment is denoted by Env₀

 $Env_0(I) =$ undef for all I

- An environment as defined here incorporates both the symbol table and state functions
- Such environments:
 - Do not allow pointer values
 - Do not include scope information
 - Do not permit aliases

Programming Languages, Third Edition

17

A Sample Small Language (cont'd.)

- For this view of the semantics of a program represented by a resulting final environment:
 - Consistency: we cannot derive two different final environments for the same program
 - Completeness: we must be able to derive a final environment for every correct, terminating program
- We now add if and while control statements
 - Syntax of the if and while statements borrows the Algol68 convention of writing reserved words backward, instead of begin and end blocks

Programming Languages, Third Edition

```
stmt \rightarrow assign\text{-}stmt \mid if\text{-}stmt \mid while\text{-}stmt assign\text{-}stmt \rightarrow identifier ':=' expr if\text{-}stmt \rightarrow \text{'if'} expr \text{'then'} stmt\text{-}list \text{'else'} stmt\text{-}list \text{'fi'} while\text{-}stmt \rightarrow \text{'while'} expr \text{'do'} stmt\text{-}list \text{'od'}
```

Figure 12.3 Second extension of the sample language

Programming Languages, Third Edition

19

A Sample Small Language (cont'd.)

- Meaning of an if-stmt:
 - $\ensuremath{\mathsf{expr}}$ is evaluated in the current environment
 - If it evaluates to an integer greater than 0, then stmt-list after then is executed
 - If not, stmt-list after the else is executed
- Meaning of a while-stmt:
 - As long as expr evaluates to a quantity greater than
 0, stmt-list is repeatedly executed and expr is reevaluated
- Note that these semantics are nonstandard!

Programming Languages, Third Edition

• Example program in this language:

```
n := 0 - 5;
if n then i := n else i := 0 - n fi;
fact := 1;
while i do
  fact := fact * i;
  i := i - 1
od
```

Semantics are given by the final environment:

```
{n = -5, i = 0, fact = 120}
```

Programming Languages, Third Edition

21

A Sample Small Language (cont'd.)

- · Difficult to provide semantics for loop constructs
 - We will not always give a complete solution
- Formal semantic methods often use a simplified version of syntax from that given
- An ambiguous grammar can be used to define semantics because:
 - Parsing step is assumed to have already taken place
 - Semantics are defined only for syntactically correct constructs
- Nonterminal symbols can be replaced by single letters

Programming Languages, Third Edition

- Nonterminal symbols can be replaced by single letters
 - May be thought to represent strings of tokens or nodes in a parse tree
- Such a syntactic specification is sometimes called an abstract syntax

Programming Languages, Third Edition

23

A Sample Small Language (cont'd.)

Abstract syntax for our sample language:

$$P \to L$$
 $L \to L_1$ ';' $L_2 \mid S$
 $S \to I$ ':=' $E \mid$ 'if' E 'then' L_1 , 'else' L_2 'fi'

| 'while' E 'do' L 'od'
 $E \to E_1$ '+' $E_2 \mid E_1$ '-' $E_2 \mid E_1$ '*' E_2

| '(' E_1 ')' | N
 $N \to N_1 D \mid D$
 $D \to$ '0' | '1' | . . . | '9'
 $I \to I_1 A \mid A$
 $A \to$ 'a' | 'b' | . . . | 'z'

P: Program

L : Statement-list

S: Statement

E: Expression

N : Number

D: Digit

I : Identifier

A: Letter

Programming Languages, Third Edition

- To define the semantics of each symbol, we define the semantics of each right-hand side of the abstract syntax rules in terms of the semantics of their parts
 - Thus, syntax-directed semantic definitions are recursive in nature
- Tokens in the grammar are enclosed in quotation marks

Programming Languages, Third Edition

25

Operational Semantics

- Operational semantics specify how an arbitrary program is to be executed on a machine whose operation is completely known
- Definitional interpreters or compilers: translators for the language written in the machine code of the chosen machine
- Operational semantics can define the behavior of programs in terms of an abstract machine

Figure 12-4 Three parts of an abstract machine

Programming Languages, Third Edition

Operational Semantics (cont'd.)

- Reduction machine: an abstract machine whose control operates directly on a program to reduce it to its semantic "value"
- Example: reduction of the expression (3+4) *5

```
(3 + 4) * 5 \Rightarrow (7) * 5 — 3 and 4 are added to get 7
=> 7 * 5 — the parentheses around 7 are dropped
=> 35 — 7 and 5 are multiplied to get 35
```

 To specify the operational semantics, we give reduction rules that specify how the control reduces constructs of the language to a value

Programming Languages, Third Edition

27

Logical Inference Rules

· Inference rules in logic are written in the form:

premise conclusion

- If the premise is true, the conclusion is also true
- Inference rule for the commutative property of addition: $\underline{a+b=c}$

Inference rules are used to express the basic rules of prepositional and predicate calculus:

$$\frac{a \to b, b \to c}{a \to c}$$

Programming Languages, Third Edition

Logical Inference Rules (cont'd.)

- Axioms: inference rules with no premise
 - They are always true
 - Example:

$$a + 0 = a$$

 Axioms can be written as an inference rule with an empty premise:

$$a + 0 = a$$

– Or without the horizontal line:

$$a + 0 = a$$

Programming Languages, Third Edition

29

Reduction Rules for Integer Arithmetic Expressions

- Structured operational semantics: the notational form for writing reduction rules that we will use
- Semantics rules are based on the abstract syntax for expressions:

$$\begin{split} E &\to E_1 \,\, \text{`+'} \,\, E_2 \,\mid\, E_1 \,\, \text{`-'} \,\, E_2 \,\mid\, E_1 \,\, \text{`*'} \,\, E_2 \,\mid\, \text{`('} \,\, E_1 \,\, \text{')'} \\ N &\to N_1 \,\, D \,\mid\, D \\ D &\to \,\, \text{`0'} \,\mid\, \text{`1'} \,\mid\, \dots \,\mid\, \text{`9'} \end{split}$$

• The notation $E => E_1$ states that expression E reduces to expression E1 by some reduction rule

Programming Languages, Third Edition

Reduction Rules for Expressions

- 1. Collect all rules for reducing digits to values in this one rule
 - All are axioms

- '0' => 0
- '1' => 1
- '2' => 2
- '3' => 3
 '4' => 4
- '5' => 5
- '6' => 6
- '7' => 7
- '8' => 8
- '9' => 9

Programming Languages, Third Edition

31

Reduction Rules for Expressions (cont'd.)

- 2. Collect all rules for reducing numbers to values in this one rule
 - All are axioms

- V'0' => 10 * V
- V '1' => 10 * V + 1
- V '2' => 10 * V + 2V '3' => 10 * V + 3
- $V \cdot 3 = 10 \cdot V + 3$ $V \cdot 4' = 10 \cdot V + 4$
- V '5' => 10 * V + 5
- V '6' => 10 * V + 6
- V '7' => 10 * V + 7
- V '8' => 10 * V + 8
- V '9' => 10 * V + 9

Programming Languages, Third Edition

Reduction Rules for Expressions (cont'd.)

3.
$$V_1' + V_2 = V_1 + V_2$$

4.
$$V_1$$
 '-' $V_2 => V_1 - V_2$

5.
$$V_1$$
 '*' $V_2 => V_1 * V_2$

6.
$$((V))' => V$$

7.
$$E \Rightarrow E_1$$

 $E' + E_2 \Rightarrow E_1' + E_2$

8.
$$\frac{E \Rightarrow E_1}{E' - E_2 \Rightarrow E_1' - E_2}$$

9.
$$\frac{E \Rightarrow E_1}{E \text{ '*' } E_2 \Rightarrow E_1 \text{ '*' } E_2}$$

Programming Languages, Third Edition

10.
$$\frac{E \Rightarrow E_1}{V'+'E \Rightarrow V'+'E_1}$$

11.
$$\frac{E \Rightarrow E_1}{E' - E \Rightarrow V' - E_1}$$

12.
$$\frac{E \Rightarrow E_1}{V "" E \Rightarrow V" ""}_{E_1}$$

13.
$$\frac{E \Rightarrow E_1}{\text{'('} E \text{')'} \Rightarrow \text{'('} E_1 \text{')'}}$$

14.
$$\frac{E => E_1, E_1 => E_2}{E => E_2}$$

33

Reduction Rules for Expressions (cont'd.)

- Rules 1 through 6 are all axioms
- Rules 1 and 2 express the reduction of digits and numbers to values
 - Character '0' (a syntactic entity) reduces to the value 0 (a semantic entity)
- Rules 3 to 5 allow an expression consisting of two values and an operator symbol to be reduced to a value by applying the appropriate operation whose symbol appears in the expression
- Rule 6 says parentheses around an expression can be dropped

Programming Languages, Third Edition

Reduction Rules for Expressions (cont'd.)

- The rest of the reduction rules are inferences that allow the reduction machine to combine separate reductions together to achieve further reductions
- Rule 14 expresses the general fact that reductions can be performed stepwise (sometimes called the transitivity rule for reductions)

Programming Languages, Third Edition

35

Reduction Rules for Expressions (cont'd.)

Applying these reduction rules to the expression:

$$2*(3+4)-5$$

• First reduce the expression: 3 + 4:

• Thus, by rule 14, we have: '3' '+' '4' => 7.

Programming Languages, Third Edition

Reduction Rules for Expressions (cont'd.)

· Continuing:

Now reduce the expression 2* (3+4) as follows:

· And finally:

Programming Languages, Third Edition

37

Environments and Assignment

· Abstract syntax for our sample language:

Programming Languages, Third Edition

- We want to extend the operational semantics to include environments and assignments
- Must include the effect of assignments on the storage of the abstract machine
- Our view of storage: an environment that is a function from identifiers to integer values (including the undefined value):

Env: Identifier \rightarrow Integer \cup {undef}

 The notation <E | Env> indicates that expression E is evaluated in the presence of environment Env

Programming Languages, Third Edition

39

Environments and Assignment (cont'd.)

- Now our reduction rules change to include environments
- Example: rule 7 with environments becomes:

$$\frac{\langle E \mid Env \rangle => \langle E_1 \mid Env \rangle}{\langle E \cdot + ' E_2 \mid Env \rangle => \langle E_1 \cdot + ' E_2 \mid Env \rangle}$$

 This states that if E reduces to E1 in the presence of Env, then E '+' E2 reduces to E1 '+' E2 in the same environment

Programming Languages, Third Edition

 The one case of evaluation that explicitly involves the environment is when an expression is an identifier I, giving a new rule:

15.
$$\frac{Env(I) = V}{\langle I \mid Env \rangle = \rangle \langle V \mid Env \rangle}$$

This states that if the value of identifier ${\tt I}$ is ${\tt V}$ in ${\tt Env}$, then ${\tt I}$ reduces to ${\tt V}$ in the presence of ${\tt Env}$

 Next, we add assignment statements and statement sequences to the reduction rules

Programming Languages, Third Edition

41

Environments and Assignment (cont'd.)

- Statements must reduce to environments instead of integer values, since they create and change environments, giving this rule:
 - 16. <I ':=' V | Env> => Env & {I = V}
 This states that the assignment of the value V to I in Env reduces to a new environment where I is
- Reduction of expressions within assignments uses this rule:

17.
$$\frac{\langle E \mid Env \rangle = \langle E_1 \mid Env \rangle}{\langle I := 'E \mid Env \rangle = \langle I := 'E_1 \mid Env \rangle}$$

Programming Languages, Third Edition

equal to V

 A statement sequence reduces to an environment formed by accumulating the effect of each assignment, giving this rule:

18.
$$\langle S \mid Env \rangle => Env_1$$

 $\langle S'; L \mid Env \rangle => \langle L \mid Env_1 \rangle$

• Finally, a program is a statement sequence with no prior environment, giving this rule:

19.
$$L \Rightarrow \langle L \mid Env_0 \rangle$$
It reduces to the effect it has on the empty starting environment

Programming Languages, Third Edition

43

Environments and Assignment (cont'd.)

- Rules for reducing identifier expressions are completely analogous to those for reducing numbers
- Sample program to be reduced to an environment:

```
a := 2+3;
b := a*4;
a := b-5
```

 To simplify the reduction, we will suppress the use of quotes to differentiate between syntactic and semantic entities

Programming Languages, Third Edition

• First, by rule 19, we have:

$$a := 2 + 3; b := a * 4; a := b - 5 =>$$

 $< a := 2 + 3; b := a * 4; a := b - 5 \mid Env_o >$

Also, by rules 3, 17, and 16:

$$\langle a := 2 + 3 \mid Env_0 \rangle = \rangle$$

 $\langle a := 5 \mid Env_0 \rangle = \rangle$
 $Env_0 \& \{a = 5\} = \{a = 5\}$

• Then by rule 18:

$$\langle a := 2 + 3; b := a * 4; a := b - 5 \mid Env_0 \rangle = > \langle b := a * 4; a := b - 5 \mid \{a = 5\} >$$

Programming Languages, Third Edition

45

Environments and Assignment (cont'd.)

• Similarly, by rules 15, 9, 5, 17, and 16:

$$< b := a * 4 \mid \{a = 5\} > = > < b := 5 * 4 \mid \{a = 5\} > = > < b := 20 \mid \{a = 5\} > = > \{a = 5\} & \{b = 20\} = \{a = 5, b = 20\}$$

Then by rule 18:

$$< b := a * 4; a := b - 5 \mid \{a = 5\} > = >$$

 $< a := b - 5 \mid \{a = 5, b = 20\} >$

Finally, by a similar application of rules:

$$\langle a := b - 5 \mid \{a = 5, b = 20\} \rangle = >$$

 $\langle a := 20 - 5 \mid \{a = 5, b = 20\} \rangle = >$
 $\langle a := 15 \mid \{a = 5, b = 20\} \rangle = >$
 $\{a = 5, b = 20\} \& \{a = 15, b = 20\}$

Programming Languages, Third Edition

Control

 Next we add if and while statements, with this abstract syntax:

$$S \rightarrow$$
 'if' E 'then' L_1 'else' L_2 'fi'
| 'while' E 'do' L 'od'

Reduction rules for if statements include:

20.
$$\frac{\langle E \mid Env \rangle = \rangle \langle E_1 \mid Env \rangle}{\langle \text{`if' } E \text{ 'then' } L_1 \text{ 'else' } L_2 \text{ 'fi' } \mid Env \rangle}$$

$$\langle \text{`if' } E_1 \text{ 'then' } L_1 \text{ 'else' } L_2 \text{ 'fi' } \mid Env \rangle$$

Programming Languages, Third Edition

47

Control (cont'd.)

21.
$$\frac{V > 0}{\text{<'if' } V \text{ 'then' } L_1 \text{ 'else' } L_2 \text{ 'fi' } \mid Env> => < L_1 \mid Env>}$$

22.
$$\frac{V \le 0}{\text{<'if' } V \text{ 'then' } L_1 \text{ 'else' } L_2 \text{ 'fi' } \mid Env> => < L_2 \mid Env>}$$

Reduction rules for while statements include:

23.
$$\frac{\langle E \mid Env \rangle = \rangle \langle V \mid Env \rangle, V \leq 0}{\langle \text{'while'} E \text{'do'} L \text{'od'} \mid Env \rangle = \rangle Env}$$

24.
$$\frac{\langle E \mid Env \rangle \Rightarrow \langle V \mid Env \rangle, V > 0}{\langle \text{`while' } E \text{ 'do' } L \text{ 'od' } \mid Env \Rightarrow \langle L; \text{ 'while' } E \text{ 'do' } L \text{ 'od' } \mid Env \rangle}$$

Programming Languages, Third Edition

Implementing Operational Semantics in a Programming Language

- It is possible to implement operational semantic rules directly as a program to get an executable specification
- This is useful for two reasons:
 - Allows us to construct a language interpreter directly from a formal specification
 - Allows us to check the correctness of the specification by testing the resulting interpreter
- A possible Prolog implementation for the reduction rules of our sample language will be used

Programming Languages, Third Edition

49

Implementing Operational Semantics in a Programming Language (cont'd.)

• Example: 3* (4+5) in Prolog:

```
times(3,plus(4,5))
```

• Example: this program:

```
a := 2+3;
b := a*4;
a := b-5
```

Can be represented in Prolog as:

 This is actually a tree representation, and no parentheses are necessary to express grouping

Programming Languages, Third Edition

Implementing Operational Semantics in a Programming Language (cont'd.)

- We can write reduction rules (ignoring environment rules for the moment)
- A general reduction rule for expressions:

```
reduce(X,Y) :- ...
```

- Where x is any arithmetic expression (in abstract syntax) and y is the result of a single reduction step applied to x
- · Example:
 - Rule 3 can be written as:

```
reduce\left(plus\left(V1,V2\right),R\right) : - \\ integer\left(V1\right), \; integer\left(V2\right), \; !, \; R \; is \; V1 \; + \; V2 \\ Programming Languages, Third Edition \; 51
```

Implementing Operational Semantics in a Programming Language (cont'd.)

Rule 7 becomes:

```
reduce(plus(E,E2),plus(E1,E2)) :- reduce(E,E1)
```

Rule 10 becomes:

```
reduce(plus(V,E),plus(V,E1)) :-
    integer(V), !, reduce(E,E1)
```

• Rule 14 presents a problem if written as:

```
reduce(E,E2) :- reduce(E,E1), reduce(E1,E2)
```

- Infinite recursive loops will result
- Instead, write rule 14 as two rules:

```
reduce_all(V,V) :- integer(V), !.
reduce_all(E,E2) :- reduce(E,E1), reduce_all(E1,E2)
```

Programming Languages, Third Edition

Implementing Operational Semantics in a Programming Language (cont'd.)

- Now extend to environments and control: a pair
 Env> can be thought of as a configuration and written in Prolog as config (E, Env)
- Rule 15 then becomes:

 Where atom(I) tests for a variable and lookup operation finds values in an environment

Programming Languages, Third Edition

53

Implementing Operational Semantics in a Programming Language (cont'd.)

Rule 16 becomes:

```
reduce(config(assign(I,V),Env),Env1) :-
   integer(V), !, update(Env, value(I,V), Env1)
```

- Where update inserts the new value v for I into Env, yielding Env1
- Any dictionary structure for which lookup and update can be defined can be used to represent an environment in this code

Programming Languages, Third Edition

Denotational Semantics

- Denotational semantics use functions to describe the semantics of a programming language
 - A function associates semantic values to syntactically correct constructs
- Example: a function that maps an integer arithmetic expression to its value:

Val: Expression \rightarrow Integer

- Syntactic domain: domain of a semantic function
- Semantic domain: range of a semantic function, which is a mathematical structure

Programming Languages, Third Edition

55

Denotational Semantics (cont'd.)

- Example: val(2+3*4) = 14
 - Set of integers is the semantic domain
 - val maps the syntactic construct 2+3*4 to the semantic value 14; it denotes the value 14
- A program can be viewed as something that receives input and produces output
- · Its semantics can be represented by a function:

 $P: \operatorname{Program} \to (\operatorname{Input} \to \operatorname{Output})$

- Semantic domain is a set of functions from input to output
- Semantic value is a function

Programming Languages, Third Edition

Denotational Semantics (cont'd.)

- Since semantic domains are often functional domains, and values of semantic functions will be functions themselves, we will assume the symbol "→" is right associative and drop the parentheses:
 - $P: \operatorname{Program} \to \operatorname{Input} \to \operatorname{Output}$
- Three parts of a denotational definition of a program:
 - Definition of the syntactic domains
 - Definition of the **semantic domains**
 - Definition of the semantic functions themselves (sometimes called valuation functions)

Programming Languages, Third Edition

57

Syntactic Domains

- Syntactic domains:
 - Are defined in denotational definition using notation similar to abstract syntax
 - Are viewed as sets of syntax trees whose structure is given by grammar rules that recursively define elements of the set
- Example: D: Digit

N: Number

$$N \rightarrow ND \mid D$$

 $D \rightarrow \text{`0'} \mid \text{`1'} \mid \dots \mid \text{`9'}$

Programming Languages, Third Edition

Semantic Domains

- Semantic domains: sets in which semantic functions take their values
 - Like syntactic domains but may also have additional mathematical structure, depending on use
- Example: integers have arithmetic operations
- Such domains are algebras, which are specified by listing their functions and properties
 - Denotational definition of semantic domains lists the sets and operations but usually omits the properties of the operations

Programming Languages, Third Edition

59

Semantic Domains (cont'd.)

- Domains sometimes need special mathematical structures that are the subject of domain theory
 - Term domain is sometimes reserved for an algebra with the structure of a complete partial order
 - This structure is needed to define the semantics of recursive functions and loops
- Example: semantic domain of the integers:

```
Domain v: Integer = \{\dots, -2, -1, 0, 1, 2, \dots\}

Operations

+: Integer \times Integer \rightarrow Integer

-: Integer \times Integer \rightarrow Integer

*: Integer \times Integer \rightarrow Integer

Programming Languages, Third Edition
```

Semantic Functions

- Semantic function: specified for each syntactic domain
- Each function is given a different name based on its associated syntactic domain, usually with boldface letters
- Example: value function from the syntactic domain Digit to the integers:

 $D: Digit \rightarrow Integer$

Programming Languages, Third Edition

61

Semantic Functions (cont'd.)

- Value of a semantic function is specified recursively on the trees of syntactic domains using the structure of grammar rules
- **Semantic equation** corresponding to each grammar rule is given
- Example: grammar rule for digits: $D \rightarrow 0$ | '1' | . . . | '9'
 - Gives rise to syntax tree nodes:

Programming Languages, Third Edition

Semantic Functions (cont'd.)

- Example (cont'd.):
 - Semantic function **D** is defined by these semantic equations representing the value of each leaf:

- This notation is shorted to the following: D[['0']] = 0, D[['1']] = 1, ..., D[['9']] = 9
- Double brackets [[...]] indicate that the argument is a syntactic entity consisting of a syntax tree node with the listed arguments as children

Programming Languages, Third Edition

63

Semantic Functions (cont'd.)

- Example: semantic function from numbers to integers: N: Number → Integer
 - Is based on the syntax: $N \rightarrow ND \mid D$
 - And is given by these equations: N[[ND]] = 10 * N[[N]]] + N[[D]]N[[D]] = D[[D]]
 - Where [[ND]] refers to the tree node

And [[D]] refers to the node

 $N \setminus N$ $N \setminus D$

D

Programming Languages, Third Edition

Denotational Semantics of Integer Arithmetic Expressions

Syntactic Domains

E: Expression N: Number D: Digit $E \to E_1 \, `+` E_2 \mid E_1 \, `-` E_2 \mid E_1 \, `*` E_2 \mid E_1 \, `*` E_2 \mid E_2 \, `*` E_3 \mid E_3 \, `$

Semantic Domains

Domain v: Integer = $\{..., -2, -1, 0, 1, 2, ...\}$ Operations

- + : Integer × Integer → Integer - : Integer × Integer → Integer
- *: Integer \times Integer \rightarrow Integer

Programming Languages, Third Edition

Semantic Functions

 $E: Expression \rightarrow Integer$

$$\begin{split} E[[E_1 '+' E_2]] &= E[[E_1]] + E[[E_2]] \\ E[[E_1 '-' E_2]] &= E[[E_1]] - E[[E_2]] \\ E[[E_1 '*' E_2]] &= E[[E_1]] * E[[E_2]] \\ E[[' (' E ')']] &= E[[E]] \\ E[[N]] &= N[[N]] \end{split}$$

N: Number \rightarrow Integer

N[[ND]] = 10 * N[[N]]] + N[[D]]N[[D]] = D[[D]]

 $D: Digit \rightarrow Integer$

D[['0']] = 0, D[['1']] = 1, ..., D[['9']] = 9

65

Denotational Semantics of Integer Arithmetic Expressions (cont'd.)

 Using these equations to obtain the semantic value of an expression, we compute E[[(2 + 3)*4]] or more precisely, E[['(' '2' '+' '3' ')' '*' '4']].

$$E[['(', '2', '+', '3', ')', '*', '4']]$$

$$= E[['(', '2', '+', '3', ')']] * E[['4']]$$

$$= E[['2', '+', '3']] * N[['4']]$$

$$= (E[['2']] + E[['3']]) * D[['4']]$$

$$= (N[['2']] + N[['3']]) * 4$$

$$= D[['2']] + D[['3']]) * 4$$

$$= (2 + 3) * 4 = 5 * 4 = 20$$

Programming Languages, Third Edition

Environments and Assignments

- First extension to our sample language adds identifiers, assignment statements, and environments
- Environments are functions from identifiers to integers (or undefined)
- Set of environments becomes a new semantic domain:

Domain *Env*: Environment = Identifier \rightarrow Integer \cup {undef}

Programming Languages, Third Edition

67

Environments and Assignments (cont'd.)

- In denotational semantics, the value undef is called **bottom**, from the theory of partial orders, and is denoted by the symbol
- Semantic domains with this value are called lifted domains and are subscripted with the symbol \(\triangle \)
- The initial environment defined previously can now be defined as: $Env_0(I) = \bot$ for all identifiers I.
- Semantic value of an expression becomes a function from environments to integers:

 $E: Expression \rightarrow Environment \rightarrow Integer \perp$

Programming Languages, Third Edition

 The value of an identifier is its value in the environment provided as a parameter:

$$E[[I]](Env) = Env(I)$$

· For a number, the environment is immaterial:

$$E[[N]](Env) = N[[N]]$$

- For statements and statement lists, the semantic values are functions from environments to environments
 - The "&" notation is used to add values to functions that we have used in previous sections

Programming Languages, Third Edition

69

```
Syntactic Domains
     P: Program
     L: Statement-list
     S: Statement
     E: Expression
     N: Number
     D: Digit
     I: Identifier
     A: Letter
     P \rightarrow L
     L \rightarrow L_1 ';' L_2 \mid S
     S \rightarrow I' := 'E'
     E \rightarrow E_{1} '+' E_{2} \mid E_{1} '-' E_{2} \mid E_{1} '*' E_{2} \mid I \mid N
     N \rightarrow ND \mid D
     D \to '0' \mid '1' \mid ... \mid '9'
     I \rightarrow IA \mid A
     A \rightarrow 'a' \mid 'b' \mid \ldots \mid 'z'
```

Figure 12.5 A denotational definition for the sample language extended with assignment statements and environments (continues)

Programming Languages, Third Edition

```
Domain v: Integer = {..., -2, -1, 0, 1, 2, ...}
Operations

+: Integer × Integer \rightarrow Integer
-: Integer × Integer \rightarrow Integer
*: Integer × Integer \rightarrow Integer

Domain Env: Environment = Identifier \rightarrow Integer

Semantic Functions

P: Program \rightarrow Environment

P[[L]] = L[[L]](Env_o)

L: Statement-list \rightarrow Environment \rightarrow Environment

L[[L_1 '; L_2]] = L[[L_2]] \circ L[[L_1]]
L[[S]] = S[[S]]
```

Figure 12.5 A denotational definition for the sample language extended with assignment statements and environments (continues)

Programming Languages, Third Edition

71

```
S: \text{Statement} \rightarrow \text{Environment} \rightarrow \text{Environment}
S[[I':='E]](Env) = Env \& \{I = E[[E]](Env)\}
E: \text{Expression} \rightarrow \text{Environment} \rightarrow \text{Integer}_{\perp}
E[[E_1''+'E_2]](Env) = E[[E_1]](Env) + E[[E_2]](Env)
E[[E_1''-'E_2]](Env) = E[[E_1]](Env) - E[[E_2]](Env)
E[[E_1''*E_2]](Env) = E[[E_1]](Env) * E[[E_2]](Env)
E[[V''E'')](Env) = E[[E_1]](Env)
E[[V'']](Env) = E[[E]](Env)
E[[V]](Env) = Env(V)
E[[V]](Env) = N[[N]]
N: \text{Number} \rightarrow \text{Integer}
N[[ND]] = 10*N[[N]] + N[[D]]
D: \text{Digit} \rightarrow \text{Integer}
D[['0']] = 0, D[['1']] = 1, \dots, D[['9']] = 9
```

Figure 12.5 A denotational definition for the sample language extended with assignment statements and environments

Programming Languages, Third Edition

Denotational Semantics of Control Statements

if and while statements have this abstract syntax:

S: Statement

```
S \rightarrow I ':= ' E

| 'if' E 'then' L_1 'else' L_2 'fi'

| 'while' E 'do' L 'od'
```

 Denotational semantics is given by a function from environments to environments:

S: Statement \rightarrow Environment \rightarrow Environment

Semantic function of the if statement:

```
S[[\text{`if' }E\text{ 'then' }L_1\text{ 'else' }L_2\text{ 'fi'}]](Env)| = 

\text{if }E[[E]](Env) > 0 \text{ then }L[[L_1]](Env) \text{ else }L[[L_2]](Env)
```

Programming Languages, Third Edition

73

Denotational Semantics of Control Statements (cont'd.)

- Semantic function for the while statement is more difficult
 - Can construct a function as a set by successively extending it to a least-fixed-point solution, the "smallest" solution satisfying the equation
 - Here, F will be a function on the semantic domain of environments
- Must also deal with nontermination in loops by assigning the "undefined" value \perp

Programming Languages, Third Edition

Denotational Semantics of Control Statements (cont'd.)

The domain of environments becomes a lifted domain:

```
Environment_{\perp} = (Identifier \rightarrow Integer_{\perp})_{\perp}
```

Semantic function for statements is defined as:

```
S: Statement \rightarrow Environment_{\perp} \rightarrow Environment_{\perp}
```

Programming Languages, Third Edition

75

Implementing Denotational Semantics in a Programming Language

- We will use Haskell for a possible implementation of the denotational functions of the sample language
- · Abstract syntax of expressions:

```
data Expr = Val Int | Ident String | Plus Expr Expr | Minus Expr Expr | Times Expr Expr
```

 We ignore the semantics of numbers and simply let values be integers

Programming Languages, Third Edition

Implementing Denotational Semantics in a Programming Language (cont'd.)

- Assume we have defined an Environment type with a lookup and update operation
- The E evaluation function can be defined as:

```
exprE :: Expr -> Environment -> Int
exprE (Plus e1 e2) env = (exprE e1 env) + (exprE e2 env)
exprE (Minus e1 e2) env = (exprE e1 env) - (exprE e2 env)
exprE (Times e1 e2) env = (exprE e1 env) * (exprE e2 env)
exprE (Val n) env = n
exprE (Ident a) env = lookup env a
```

Programming Languages, Third Edition

77

Axiomatic Semantics

- Axiomatic semantics: define the semantics of a program, statement, or language construct by describing the effect its execution has on assertions about the data manipulated by the program
- Elements of mathematical logic are used to specify the semantics, including logical axioms
- We consider logical assertions to be statements about the behavior of the program that are true or false at any moment during execution

Programming Languages, Third Edition

Axiomatic Semantics (cont'd.)

- Preconditions: assertions about the situation just before execution
- Postconditions: assertions about the situation just after execution
- Standard notation is to write the precondition inside curly brackets just before the construct and write the postcondition similarly just after the construct:

```
\{x = A\} x := x + 1 \{x = A + 1\} Or \{x = A\}
 x := x + 1
 \{x = A + 1\}
```

Programming Languages, Third Edition

79

Axiomatic Semantics (cont'd.)

- Example: x := 1 / y
 - Semantics become:

$${y \neq 0}$$

x := 1 / y
 ${x = 1/y}$

- Such pre- and postconditions are often capable of being tested for validity during execution, as a kind of error checking
 - Conditions are usually Boolean expressions
- In C, can use the assert.h macro library for checking assertions

Programming Languages, Third Edition

Axiomatic Semantics (cont'd.)

- An axiomatic specification of the semantics of the language construct c is of the form {P} C {Q}
 - Where ℙ and ℚ are assertions
 - If P is true just before execution of C, then Q is true just after execution of C
- This representation of the action of c is not unique and may not completely specify all actions of c
- Goal-oriented activity: way to associate to C a general relation between precondition P and postcondition Q
 - Work backward from the goal to the requirements

Programming Languages, Third Edition

81

Axiomatic Semantics (cont'd.)

- There is one precondition P that is the most general or weakest assertion with the property that {P} C {Q}
 - Called the weakest precondition of postcondition of and construct c
 - Written as wp(C,Q).
- Can now restate the property as

 $\{P\}\ C\ \{Q\}\ \text{if and only if}\ P\to wp(C,Q)$

Programming Languages, Third Edition

Axiomatic Semantics (cont'd.)

- We define the axiomatic semantics of language construct c as the function wp(C,_) from assertion to assertion
 - Called a predicate transformer: takes a predicate as argument and returns a predicate result
 - Computes the weakest precondition from any postcondition
- Example assignment can now be restated as:

$$wp(x := 1/y, x = 1/y) = \{y \neq 0\}$$

Programming Languages, Third Edition

83

General Properties of wp

- Predicate transformer wp(C,Q) has certain properties that are true for almost all language constructs c
- Law of the Excluded Miracle: wp(C,false) = false
 - There is nothing a construct C can do that will make false into true
- Distributivity of Conjunction:

$$wp(C,P \text{ and } Q) = wp(C,P) \text{ and } wp(C,Q)$$

Law of Monotonicity:

if
$$Q \to R$$
 then $wp(C,Q) \to wp(C,R)$

Programming Languages, Third Edition

General Properties of wp (cont'd.)

• Distributivity of Disjunction:

wp(C,P) or $wp(C,Q) \rightarrow wp(C,P)$ or Q)

- The last two properties regard implication operator "→" and "or" operator with equality if c is deterministic
- · The question of determinism adds complexity
 - Care must be taken when talking about any language construct

Programming Languages, Third Edition

85

Axiomatic Semantics of the Sample Language

- The specification of the semantics of expressions alone is not commonly included in an axiomatic specification
- Assertions in an axiomatic specificator are primarily statements about the side effects of constructs
 - They are statements involving identifiers and environments

Programming Languages, Third Edition

Axiomatic Semantics of the Sample Language (cont'd.)

 Abstract syntax for which we will define the wp operator:

$$P \rightarrow L$$
 $L \rightarrow L_1$ '; $L_2 \mid S$
 $S \rightarrow I$ ':= ' E
 | 'if' E 'then' L_1 'else' L_2 'fi'
 | 'while' E 'do' L 'od'

- The first two rules do not need separate specifications
 - The wp operator for program P is the same as for its associated statement-list L

Programming Languages, Third Edition

87

Axiomatic Semantics of the Sample Language (cont'd.)

• **Statement-lists**: for lists of statements separated by a semicolon, we have:

$$wp(L_1; L_2, Q) = wp(L_1, wp(L_2, Q))$$

- The weakest precondition of a series of statements is the composition of the weakest preconditions of its parts
- Assignment statements: definition of wp is:

$$wp(I := E,Q) = Q[E/I]$$

- Q[E/I] is the assertion Q, with E replacing all free occurrences of the identifier E in Q

Programming Languages, Third Edition

Axiomatic Semantics of the Sample Language (cont'd.)

- Recall that an identifier I is free in a logical assertion Q if it is not bound by either the existential quantifier "there exists" or the universal quantifier "for all"
- wp(I := E,Q) = Q[E/I] says that for Q to be true after the assignment I := E, whatever Q says about I must be true about E before the assignment is executed
- If statements: our semantics of the if statement state that the expression is true if it is greater than 0 and false otherwise

Programming Languages, Third Edition

89

Axiomatic Semantics of the Sample Language (cont'd.)

- Given the if statement: if E then L_1 else L_2 fi
- · The weakest precondition is defined as:

```
\begin{split} wp(\text{if } E \text{ then } L_1 \text{ else } L_2 \text{ fi, } Q) = \\ (E > 0 \to wp(L_1, Q)) \text{ and } (E \leq 0 \to wp(L_2, Q)) \end{split}
```

- While statements: while E do L od executes as long as E>0
- Must give an inductive definition based on the number of times the loop executes
- Let H_i (while E do L od, Q) be a statement that the loop executes I times and terminates satisfying Q

Programming Languages, Third Edition

Axiomatic Semantics of the Sample Language (cont'd.)

- Then $H_0(\text{while } E \text{ do } L \text{ od}, Q) = E \leq 0 \text{ and } Q$
- And $H_1(\text{while } E \text{ do } L \text{ od, } Q) = E > 0 \text{ and } wp(L,Q \text{ and } E \leq 0)$ = E > 0 and $wp(L,H_0(\text{while } E \text{ do } L \text{ od, } Q))$
- Continuing, we have in general that:

$$H_{i+1}(\text{while } E \text{ do } L \text{ od, } Q) = E > 0 \text{ and } wp(L,H_i(\text{while } E \text{ do } L \text{ od, } Q))$$

Now we define:

```
wp(\text{while } E \text{ do } L \text{ od, } Q)
= there exists an i such that H_i(\text{while } E \text{ do } L \text{ od, } Q)
```

Programming Languages, Third Edition

91

Axiomatic Semantics of the Sample Language (cont'd.)

- Note that this definition of the semantics of the while requires that the loop terminates
- A non-terminating loop always has false as its weakest precondition (it can never make a postcondition true)

```
wp(\text{while 1 do } L \text{ od}, Q) = \text{false, for all } L \text{ and } Q
```

 These semantics for loops are difficult to use in the area of proving correctness of programs

Programming Languages, Third Edition

Proofs of Program Correctness

- The major application of axiomatic semantics is as a tool for proving correctness of programs
- Recall that C satisfies a specification{P} C {Q}, provided P → wp(C,Q)
- To prove correctness:
 - 1. Compute *wp* from the axiomatic semantics and general properties of *wp*
 - 2. Show that $P \rightarrow wp(C,Q)$

Programming Languages, Third Edition

93

Proofs of Program Correctness (cont'd.)

- To show that a while-statement is correct, we only need an approximation of its weakest precondition, that is some assertion w such that
 - $W \to wp(\text{while} \dots, Q)$
- If we can show that P→W, we have also shown the correctness of {P} while... {Q}, since P→W and W→wp (while..., Q) imply that P→wp (while..., Q)

Programming Languages, Third Edition

Proofs of Program Correctness (cont'd.)

- Given the loop while E do L od, we need to find an assertion W such that these conditions are true:
 - (a) W and $(E > 0) \rightarrow wp(L, W)$
 - (b) W and $(E \le 0) \rightarrow Q$
 - (c) $P \rightarrow W$
 - Every time the loop executes, w continues to be true by condition (a)

 - (c) implies that w is the required approximation for wp(while...,Q)

Programming Languages, Third Edition

95

Proofs of Program Correctness (cont'd.)

- An assertion w satisfying condition (a) is called a loop invariant for the loop, since a repetition of the loop leaves w true
 - In general, loops have many invariants w
 - Must find an appropriate w that also satisfies conditions (b) and (c)

Programming Languages, Third Edition