
LONG PAPER

Adaptive sliding menubars make existing software
more accessible to people with severe motion impairments

Christopher W. Kwan • Isaac Paquette •

John J. Magee • Margrit Betke

Published online: 15 March 2013

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The graphical user interfaces of popular software

are often inaccessible to people with severe motion impair-

ments, who cannot use the traditional keyboard and mouse, and

require an alternative input device. Reaching for buttons and

selecting menu items, in particular, can be difficult for non-

verbal individuals with quadriplegia, who control the mouse-

pointer with head motion via a mouse-replacement system.

This paper proposes interaction techniques that can be used

with mouse-replacement systems and enable the creation of

accessible graphical user interfaces. To illustrate these tech-

niques, the paper presents an image editing application, named

Camera Canvas, that uses a sliding toolbar as its universal menu

controller. The parameters of the toolbar automatically adapt to

the movement abilities of the specific user. Individuals with and

without disabilities and of a variety of ages were observed using

Camera Canvas. It was found that the developed techniques

worked across many different movement abilities and experi-

ence levels. Then, it was investigated how such techniques

could be used to ‘‘retrofit’’ existing Windows applications with

new graphical user interfaces. A tool called Menu Controller

was created that can automatically re-render the menus of some

existing applications into adaptive sliding toolbars. Menu

Controller enables users of mouse-replacement systems to

select menu entries that were otherwise inaccessible to them.

1 Introduction

Worldwide, millions of individuals are affected by disor-

ders or injuries that cause severe motion impairments [1].

Their extreme motor impairments may have resulted from

traffic accidents, battlefield injuries, brainstem strokes,

cerebral palsy, and degenerative neurological diseases,

such as muscular dystrophy (MD), multiple sclerosis (MS),

or amyotrophic lateral sclerosis (ALS). Individuals who

cannot speak and cannot use their hands to operate a

computer mouse are extremely limited in their means of

communication. Mouse-replacement systems and custom-

ized assistive software can immensely improve their daily

lives by enabling them to control a computer and thereby

communicate with family and caregivers [1, 2]. To fully

participate in the information society, however, they need

universal access to standard software products [3]. Unfor-

tunately, the graphical user interfaces (GUIs) of popular

applications are often inaccessible to people with quadri-

plegia or other severe motion impairments. This paper

describes an adaptive interface solution that enables users

of mouse-replacement systems to access GUI buttons and

menu items that were otherwise inaccessible or difficult to

reach and select. The proposed method is implemented as a

‘‘sliding toolbar’’ that serves as a universal menu control-

ler. The interface is able to first adapt itself to the abilities

of the user by measuring the user’s actions during simple

games. It then allows the user himself or herself to adjust

its layout while using it, to better suit the user’s specific

needs. If some buttons are out of the user’s reach, the user

can use the sliding toolbar to change the layout on the fly,

bringing those buttons nearer to his or her convenient

working area.

The design, implementation, and testing of the proposed

interface solution were conducted in two phases. In the first

phase, a specific application, called Camera Canvas, was

developed to investigate the sliding toolbar method.

Camera Canvas empowers individuals with motor impair-

ments by enabling them to manipulate photographs, create

C. W. Kwan � I. Paquette � J. J. Magee � M. Betke (&)

Department of Computer Science,

Boston University, Boston, MA 02215, USA

e-mail: betke@cs.bu.edu

URL: http://www.cs.bu.edu/faculty/betke

123

Univ Access Inf Soc (2014) 13:5–22

DOI 10.1007/s10209-013-0295-2



drawings, and use it as a canvas for communication and

expression. Image editing involves many different mouse

interactions, which had to be reimagined for use with a

mouse-replacement system. The development of Camera

Canvas offered an important opportunity for experimenting

with different types of user interfaces and interaction

techniques. While the core contribution is the sliding cus-

tomizable toolbar method, experimentation was also car-

ried out with strategies to simulate clicking-and-dragging

and clicking-and holding interactions, provide visual

feedback, and reduce accidental selection commands.

In the second phase of the work, after user studies with

Camera Canvas helped us to refine the techniques, the

functionality of the sliding toolbar method was generalized

and the ‘‘framework application’’ Menu Controller was

created. Menu Controller automatically retrofits the GUIs

of existing Windows applications with adaptive sliding

menubars with buttons that enable users of mouse-

replacement systems to access the menu entries of these

applications.

Preliminary versions of Camera Canvas and Menu

Controller have been described in conference proceedings

and technical reports [4–6]. This paper describes the most

recent versions of the software and explains how several

key issues have been addressed that were unsolved in

previous versions. In particular, the difficulties experienced

by an individual with quadriplegia during a user study

prompted further exploration and changes of Menu Con-

troller. Finally, additional user studies involving partici-

pants with cerebral palsy are presented.

2 Related work

Users with motor impairments often have difficulties con-

trolling the mouse pointer, for example, keeping it steady

while navigating, moving it in desired directions on the

screen, and targeting a button or menu item without slip-

ping off or overshooting [3]. Difficulties also include

operation of the mouse buttons. Similar to how this work

addresses the difficulties that users of mouse-replacement

systems have in selecting small, closely grouped menu

entries, Worden et al. [7] addressed the difficulties that

older adults have in making small mouse movements and

clicking on small targets. Instead of trying to modify the

interface layouts of existing applications, the authors

developed two new interaction techniques that operate

within existing layouts: area cursors—mouse pointers with

larger than normal activation areas and sticky icons—icons

that automatically reduce the gain ratio of the mouse

pointer when it is on them, making it easier for the mouse

pointer to stop or ‘‘stick’’ on the icon. The Bubble Cursor

[8] is an improvement on the area cursor, such that it

dynamically resizes its activation area so that only one

target is selectable at any time. Hurst et al. [9] also

addressed the problem of making user interface targets

easier to select. They used an adaptive pointing technique

where small forces are associated with past clicks. Fre-

quently clicked-on areas accumulate a pseudo-haptic

magnetic field that draws the mouse pointer to them in a

way similar to sticky icons. The ceCursor by Porta et al.

has been designed as a contextual gaze-controlled mouse

pointer for use with eye-tracking interfaces. The pointer is

represented as a square with four direction buttons placed

around it. The user can move the pointer in a stepwise

manner, icon-by-icon, or continuously by gazing at a

direction button.

The proposed concept of a ‘‘sliding menu bar’’ relates to

the idea of reducing the size of an onscreen keyboard by

enabling the user to slide into view only those rows of the

keyboard that are needed [10]. Spakov and Majaranta [10]

showed that text can be entered via such keyboards by

gaze.

The work reported here relates to projects on creating

framework applications that can provide access to or aug-

ment existing software. Akram et al. [11] developed an

application mediator to give users of mouse-replacement

systems a greater degree of autonomy when launching

applications or switching between tasks. Their system has

an accessible parent menu that provides access to a fixed

set of application tools, including a text-entry program,

web browser, and music player. Another accessibility

project that provides a generic approach for accessing more

than one application is Johar [12]. It provides a mechanism

that developers of applications can implement that will

allow external user interfaces to manipulate their applica-

tions. However, Johar can only be used for applications

that are explicitly designed to cater to the Johar interface.

Olsen et al. [13] described an architecture for creating

‘‘interface attachments’’—small independent programs,

such as a text searcher or a spell checker, that can augment

the functionality of a variety of applications. Their imple-

mentation involves intercepting components of a Java user

interface toolkit in order to access the visual information

that the applications display on screen.

The realization that computer interfaces should adapt to

the user instead of the user having to adapt to the interface

is important [14]. Traditional interfaces are inflexible or at

best difficult to customize. Interfaces for users with dis-

abilities should be designed so that they can adapt and be

easily modified to cater to the capabilities of the user [15].

Moreover, users should be able to access assistive tech-

nology independently, with minimal assistance from care-

givers [16]. Recent efforts have focused on creating

customizable [17–19] and automatically generated [20]

user interfaces for people with motor impairments. Some

6 Univ Access Inf Soc (2014) 13:5–22

123



users have better control of their movements along certain

axes [21], including eye movements [22], some users can

only click buttons of a certain minimum size, and some

users experience degradation of movement abilities over

time.

SUPPLE is a system that automatically generates per-

sonalized user interfaces for individual users based on their

motor capabilities [20]). The Hierarchical Adaptive Inter-

face Layout (HAIL) model presents specifications for the

design of user interfaces that can change and adapt to users

with severe motion impairments [17]. The approaches of

both SUPPLE and HAIL look at generating user interfaces

at a programmatic level; creating more usable and adaptive

interfaces by creating new applications. In Menu Control-

ler, a different but related problem was addressed, namely

of generating user interfaces for software that already

exists and whose source code is not available to be modi-

fied. The problem at stake is how to transform these

already implemented interfaces to make them more usable

and customizable to the needs of users with severe motor

impairments.

The work presented here relates to general work in input

and output redirection and reverse engineering of user

interfaces. Two projects utilizing redirection on the Win-

dows platform are mudibo [23], which can simultaneously

duplicate dialog boxes across multiple monitors, allowing a

user to interact with the dialog in any location, and Win-

Cuts [24], which allows a user to replicate portions of

existing windows and interact with them as new indepen-

dent windows. Stuerzlinger et al. [25] developed User

Interface Façades, a system for adapting existing user

interfaces in general. Their system uses direct manipulation

techniques and requires no programmatic changes to the

existing applications. It provides facilities to create new

user interfaces using duplicated screen regions, add holes

to user interfaces in order to overlay applications on top of

one another, and most relevantly modify the interaction

behavior of existing user interface widgets or replace them

entirely with new ones.

There are also projects that achieve redirection and

reverse engineering of user interfaces with image pro-

cessing. The SegMan system [26] translates pixel-level

input, such as the appearance of user interface components,

into objects and symbols for cognitive models, so that the

models can interact with existing Windows applications.

Hurst et al. [27] improved upon the Microsoft Active

Accessibility API’s [28] ability to detect the location and

size of user interface targets by developing a hybrid

approach that combines the API with machine learning and

computer vision techniques. Finally, Prefab [29] is a system

that uses a pixel-based approach, independent of specific

user interface toolkits or platforms, to reverse-engineer the

user interface structures of existing applications. Using

input and output redirection, Prefab can then modify the

apparent behavior of these interfaces or even implement

new advanced behaviors.

Camera Canvas is unique as an application for people

with severe motion impairments in that it combines photo-

editing and drawing functionality. Drawing programs have

been popular applications for users of mouse-replacement

systems, especially children [1]. A number of drawing

programs for users with severe physical disabilities exist.

Eagle Paint [1] is a program designed for use with a mouse-

replacement system that allows users to draw freeform

lines, EyeDraw [30] is a drawing program designed for use

with an infrared eye tracker, and VoiceDraw [31] is a

drawing program that allows users to draw freeform lines

by making different sounds with their voices.

Individuals with extreme paralysis have a choice among

various commercial, open-source, and freeware mouse-

replacement systems [1, 3] that may be controlled by head

motions [32–35] or eye motions [22, 36–41]. User studies

were conducted by the authors of this paper with the

Camera Mouse interface [32], a popular, freely available

video-based mouse-replacement system that enables a user

to control the mouse pointer by moving his or her head in

front of a camera. Between June 2007 and 2013, Camera

Mouse has been downloaded more than 1,000,000 times

and is used in schools, hospitals, and private homes

worldwide [42]. The interface issues a click command

when the mouse pointer has dwelled over a GUI item for a

certain amount of time (the default setting is 1 s). Mouse

pointer movements can be set to be smoothed, a feature

helpful for users with tremor. Various kinds of customized

application programs have specially been designed for use

with Camera Mouse [1], including text-entry programs,

web browsers, games, and drawing programs. In the user

studies described in this paper, Eagle Aliens, a simple

‘‘shoot the aliens’’ game, and Eagle Paint, the above-

mentioned drawing program, were used. These applications

had been specifically developed for Camera Mouse and are

freely available on its website [42].

3 Development and evaluation of camera canvas

This section first describes the proposed adaptive sliding

toolbar method and how users can control menu items of

Camera Canvas with it. It then explains how the complex

mouse actions have been redesigned, such as clicking-and-

dragging, needed for photo-editing and picture drawing, so

that the Camera Canvas software becomes accessible to

users of mouse-replacement input systems. The section

also reports on studies with users with and without dis-

abilities, who used Camera Canvas with the mouse-

replacement system Camera Mouse.

Univ Access Inf Soc (2014) 13:5–22 7

123



3.1 Sliding toolbar

The main user interface element of Camera Canvas is the

Sliding Toolbar (Fig. 1 top). It consists of two panels: a

tool menu panel containing specific image editing tools and

a navigation panel containing navigation buttons. The user

can reposition the tool panel by sliding it sideways using

the Prev and Next buttons in the navigation panel (Fig. 1).

This sliding ability addresses the problem of some users

only having good movement control within a certain range

of the center of the screen. If users cannot reach a tool

button on the edge of the screen, they can select Prev or

Next to slide the tool buttons toward the center. The

direction of movement is from the perspective of the button

currently in the center position of the toolbar (in Fig. 1 top,

the Zoom button, in Fig. 1 bottom, the Color Choice but-

ton). Pressing the Prev button will cause the button in the

previous position to the center position to slide to the center

position. Similarly, pressing the Next button will cause the

button in the next position after the center position to slide

to the center position. As long as the user keeps the mouse

pointer on top of the Prev or Next button, the toolbar will

continue to automatically slide on an adjustable interval.

When a tool from the tool menu panel is selected, if that

tool has a submenu, the buttons of that submenu will

replace the current buttons in the tool menu. The user can

get back to the previous menu of buttons by pressing the

Back button in the navigation panel or go back to the top-

most tool menu by clicking the Main Menu button in the

navigation panel.

Camera Canvas has three configurable settings in the

Settings menu: toolbar placement, button size, and toolbar

sliding speed. These settings can all be changed at run-time

using tools within the application. The tools are designed to

be easy to use so that the user can actually modify the

configuration himself. The placement and orientation of the

toolbar can be changed to four settings: Horizontal-Top

(Fig. 1, left), Horizontal-Bottom, Vertical-Left (Fig. 1,

right), and Vertical-Right.

Each setting aims to constrain movement primarily

along a single axis and in a single area of the screen to

address the challenges of users having better movement

abilities along different axes and users being able to reach

different areas of the screen more easily than other areas.

Fig. 1 Top Camera Canvas in Photo-editing mode with a horizontal-

top layout and small buttons. Bottom Drawing mode with a vertical-

left layout and larger buttons (right). The second set of Prev and Next

buttons signify that the toolbar includes more buttons off-screen

Fig. 2 The ‘‘Catch the Butterfly’’ game recommends which axis and

area of the screen are best for the user by having her follow a butterfly

(left). Green lines show ideal mouse trajectory, red circles show

actual trajectory. The ‘‘Pop the Balloon’’ game recommends a button

size for the user by having her try to keep the mouse pointer still

within a small area (right). The balloon is the ideal area; red circles

show the actual mouse movement area

8 Univ Access Inf Soc (2014) 13:5–22

123



The size of all buttons in the application can be made

smaller or larger to address the challenge of different

people being able to click buttons of different minimum

sizes. Finally, the interval at which the toolbar buttons slide

can also be adjusted so that the buttons slide faster or

slower. The Settings menu also contains a configuration

wizard for Camera Canvas in the form of two simple, easy

to understand games (Fig. 2). With these games, a user’s

performance can be analyzed automatically, so that settings

for Camera Canvas can be recommended that would make

it the most usable for the specific user.

3.2 Camera canvas: photo-editing tools

For the Photo-editing mode of Camera Canvas, several

interaction techniques were developed to make common

photo-editing tasks possible with camera-based mouse-

replacement systems. The Move and Zoom tools place four

translucent arrows in the middle of the screen. To pan

around the image, the user puts the mouse pointer over one

of the arrows and the image automatically moves until the

user moves the mouse pointer off of the arrow (Fig. 3, top

left and bottom). No matter the size of the image, the user

only needs to make small movements between the arrows

to pan, instead of having to physically move the mouse

pointer around the entire image. The Rotate tool uses a

custom user interface component called a Choice Form

(Fig. 3, top right) that is an alternative to components such

as sliders or small increment arrows, which are challenging

for users who have difficulties controlling the mouse

pointer. The middle of the Choice Form contains a preview

of the rotated image so that the user can see the effects of

the rotation before actually committing the change. The

Choice Form is also used by many other tools in Camera

Canvas.

Instead of the traditional click-and-drag method of

selecting a portion of an image, the Select tool uses two

sets of arrows similar to the ones used in the Move and

Zoom tools. When using Select, a translucent blue rect-

angle (representing the selection) and two sets of arrows

appear in the center of the image, for the user’s convenient

access. The set of four arrows on the left control the

position of the top left corner of the selection box and the

set of four arrows on the right control the position of

the bottom-right corner of the selection box. By moving the

mouse pointer into these arrows, the user can control the

Fig. 3 Photo-editing with Camera Canvas. Top left: Camera mouse user with Moving Tool. Top right: Rotate Tool. Bottom: Select Tool

Univ Access Inf Soc (2014) 13:5–22 9

123



position and size of the selection box. The two sets of

arrows never change positions from the center of the

image, so no matter the size of the selection, the user can

control it using only small movements between the two sets

of arrows. Once the selection box is of the desired position

and size, the user can then cut, copy, paste, or crop the

selection.

3.3 Camera canvas: drawing tools

The Camera Canvas interaction for drawing straight lines

and geometric shapes was inspired by the drawing process

in EyeDraw [30]. To address the ‘‘Midas touch’’ problem

[43] for drawing (how to differentiate looking at the picture

versus actually drawing the picture), the researchers of

EyeDraw created a system where if the user looked at one

spot for some amount of time, the cursor would change

colors to signify that drawing was about to begin; if the

user was just looking and did not want to actually start

drawing, they would just need to look elsewhere.

In Camera Canvas, to start drawing, the user must first

dwell on the area where she would like to place the starting

point of her drawing. After a click is registered, a green

helper box appears where she clicked to signal that drawing

is about to begin. If the user would actually like to start

drawing at that point, she keeps the mouse pointer in the

green Helper Box long enough for another click to register

and then drawing begins. If the user does not want to place

the starting point at that location, she only needs to move

the mouse pointer out of the green Helper Box and it dis-

appears, resetting the process. As the user is drawing, the

line or shape is continuously redrawn with the ending point

at the current position of the cursor. When the user wants to

end the drawing, she dwells where she would like to end

the drawing and a red Helper Box appears. If she would in

fact like to place the end point of the drawing at that point,

she just needs to keep the pointer inside of the red Helper

Box. If she does not want to place the end point there and

instead wants to continue drawing, she just needs to move

the mouse pointer out of the red Helper Box and it disap-

pears. The sizes of the Helper Boxes are the same size as

the toolbar buttons and will change if the button size is

changed. The drawing process is outlined in Fig. 4, top.

Instead of using a traditional color palette which relies

on sliders or clicking of a precise point in a color wheel, a

simple color palette was implemented that is much more

usable with Camera Mouse, but still gives users a fair

amount of color variety. The color menu (Fig. 4, bottom)

first displays a set of primary colors: black, white, brown,

red, orange, yellow, green, blue, and violet. When the user

clicks on a primary color, nine different shades of that

color are then automatically generated for the user to

choose from.

3.4 Camera canvas experiments, results,

and conclusions

Several user studies were conducted to obtain a qualitative

assessment of the program use.

3.4.1 Methodology of experiments and technical details

A total of 28 users without and 3 users with physical

disabilities participated in the study, with ages ranging

from elementary, middle, and high school age, college age

and middle age. The users without disabilities had never

used the Camera Mouse input system before. The partici-

pants were asked to use various Photo-editing tools to

manipulate a photograph and various Drawing tools to

draw a shape. They were then asked to play around with

changing different configuration settings. There was no

strict test plan; users were given freedom to explore the

different features of the program as the researchers

observed them. The studies were conducted in the summer

and fall of 2010 and involved several multi-hour computer

sessions.

Fig. 4 Top: The drawing process in Camera Canvas. Bottom: The

Camera Canvas color palette generating different shades of green

Fig. 5 Drawings created by users without disabilities

10 Univ Access Inf Soc (2014) 13:5–22

123



Camera Canvas was designed for Windows and can

handle various versions of Windows-based operating sys-

tems. The evaluation studies were conducted with laptop

and desktop computers by Sony, Alienware, and Dell with

Intel dual or quad core CPU speeds ranging from 1.83 to

2.83 GHz and running the 32-bit versions of Windows 7

Professional, Windows Vista, and Windows Server 2003,

respectively. Computer screen resolution was 1280 9 800,

1920 9 1,200, and 1,280 9 1024, respectively. The lap-

tops computers had built-in cameras located above the

laptop screens with resolutions 640 9 480 (Sony) and

1280 9 960 (Alienware), respectively. The desktop Dell

computers were used with Logitech QuickCam Orbit

cameras that were placed on the desk in front of the users.

The distance between users and cameras ranged from 35 to

60 cm. The computers were located in typical office

environments with fluorescent lights from above and peo-

ple having conversations and moving around in the back-

ground. An exception was the environment of user study 2,

which was conducted in the participant’s home. At first, it

was too dark in his living room for Camera Mouse to track

well, so a lamp was turned on and pointed toward user C.

The positioning of C was also unusual. User C has to sit in

a wheelchair all day at school, so when at home, he is more

comfortable sitting in a deeply reclined position. The lap-

top was placed on a tray located above C’s abdomen. C’s

head was ca. 50 cm from the screen (Fig. 6, left).

3.4.2 Studies with users without physical impairments

The participants in the experiments found the software easy

to understand and use even without prior experience using

Camera Mouse. With a little experimentation time, users

without disabilities were quickly able to start drawing

shapes and manipulating images. It was found that nearly

all users enjoyed the drawing tools the most and spent most

of their time with the program drawing (Fig. 5). The users

provided valuable feedback on which features needed

improvement, and also what features they wanted to see in

future versions. Common suggestions were a fill tool and

clip-art stamps.

3.4.3 User study 1

A user study was conducted with G, a 13-year-old student

in the 6th grade who has cerebral palsy. G had never used

Camera Mouse before, but was eager to try out the soft-

ware. The researchers first introduced the Camera Mouse to

her, then she was asked to try out moving the mouse

pointer by moving her head, and it was shown to her how

to play with Eagle Aliens and Eagle Paint. G then wanted

to try out Camera Canvas. She first received an introduc-

tion of the Camera Canvas functionality and interface

components. In particular, a quick overview of the sliding

toolbar user interface element was presented, explaining

how it works and how its settings can be adjusted. When

using Camera Mouse, G had trouble keeping the mouse

pointer still in small areas long enough for a click to reg-

ister. Even after an attempt had been made in adjusting the

Camera Mouse settings for dwell time, it was still difficult

for G to click with the Camera Mouse. G also was having

difficulties because buttons on the Camera Canvas toolbar

were too close together, and therefore, neighboring buttons

were easy to click on by accident. G has some control of

her index finger and can use it to operate the touch pad of

the laptop. When G had trouble using Camera Mouse, she

would use her hand with the touch pad to select options

instead. Since G was having difficulties with Camera

Mouse, the evaluation of Camera Canvas was continued

with her using the touch pad. After some practice, G

understood how the sliding toolbar worked and was able to

select different options. She was able to open a pre-loaded

image of a cat, select a shade of purple, and draw lines on

the image.

3.4.4 User study 2

Another participant was C, a 16-year-old high school stu-

dent with cerebral palsy (Fig. 6 left). C primarily interacts

with his computer using Dragon voice recognition software

[44] and also has some control in his index finger which

allows him to use the touch pad on the laptop. He had never

used camera-based assistive technology before, so in the

Fig. 6 Left: A user with

cerebral palsy (User C)

interacting with Camera Canvas

using the Camera Mouse. Right:

An image edited by a user with

severe cerebral palsy (User R).

He was able to rotate the image

(presented to him upside-down)

and experiment with drawing

several shapes on the image

Univ Access Inf Soc (2014) 13:5–22 11

123



first session, he was given an introduction to Camera

Mouse and some of the software developed for it. C

quickly understood how to use Camera Mouse. He enjoyed

adjusting the settings of Camera Mouse himself. C tried to

do most things by moving the mouse pointer with Camera

Mouse, but also used his finger with the touch pad if actions

were too difficult with Camera Mouse. C was first asked to

play the game Eagle and then he moved on to Camera

Canvas. C was able to understand and use the sliding toolbar

and several of the tools. He was very inquisitive and liked to

experiment, drawing freeform lines, something that he had

never done before. Once he became more familiar with the

freeform drawing tool, he was able to open an image of his

family from his computer and use the tool to draw hair on

top of one his family member’s heads.

3.4.5 User study 3

The user studies also involved a non-verbal adult, R, with

severe cerebral palsy and quadriplegia (Fig. 6 right). His

level of cognitive function is very high, but his movement

abilities are extremely limited. He cannot control his index

finger like users G and C, and was completely dependent

on Camera Mouse to move the mouse pointer. User R had

participated in experiments with the initial version of

Camera Canvas [4]. In the prior experiments, R was

excited about the prospect of manipulating images but was

unable to use the majority of the features [1]. In the

experiments with the current version, the general purpose

of the program was explained to him, how the toolbar

worked, and its customization possibilities regarding

position, button size, and sliding speed. R had a difficult

time reaching buttons at the top of the screen, so a Camera

Canvas configuration with large buttons in a Horizontal-

Bottom layout was selected.

User R understood how the Camera Canvas interface

worked. Initially, it was difficult for him to keep the mouse

pointer on top of one button long enough for the click to

register. Shortening the time required for a dwell-time click

in the Camera Mouse settings helped reduce the problem

but it still persisted. R was able to use the Prev and Next

buttons to slide the toolbar buttons he wanted toward the

middle of the screen. Using the Drawing mode, he was able

to select different shapes and then draw rectangles around

the image (Fig. 6, right). It is not known whether R

intended to draw something specific or was just experi-

menting with the tool, as this may have been the first time

that R interacted with a drawing interface. Using the Photo-

editing mode, R was able to successfully use the Move and

Zoom features to zoom the image to a greater magnifica-

tion and then pan the image so that a particular portion was

centered on the screen. R was also able to apply the Invert

Colors feature to the image and then undo the change.

The user study with R revealed a number of challenges.

R could slide to buttons that he wanted to reach, but

oftentimes he would slide the toolbar too much and over-

shoot the button he wanted or would accidentally activate

the Prev or Next button when trying to select a button in

the tool menu, causing his intended target to shift. To

address this problem, the researcher tried to slow down the

sliding speed setting, but R still hit the Prev and Next

buttons by accident because of their proximity to the tool

menu buttons. R also accidentally selected buttons next to

his intended buttons. A particularly frustrating experience

for him was accidentally hitting the Main Menu button

when he was in the middle of trying to apply an effect to

the image. Hitting the button by accident would take R all

the way to the Main Menu of the program and then he

would have to click on Photos, slide down to effects, and

then click on the effect again. This happened multiple

times and eventually the researcher took control of the

mouse in order to get him back to the Effects menu again.

The observation of accidental activation of buttons sug-

gests that the buttons should be spaced farther apart or that

this setting should also be adjustable. The observations that R

had to keep sliding to reach buttons near the edge of the

screen and that he kept hitting buttons accidentally suggest

that he might benefit from the toolbar having fewer buttons.

A greater number of buttons on the toolbar increases the

chance for error. It may also be cognitively overwhelming

for someone using the program for the first time. Perhaps a

more hierarchical approach (more levels with fewer buttons

at each level) would be more usable for this user. Even

though the arrows of the Move feature were a fixed size that

may have been too small for R, he was able to select them.

This was because the Move command was activated when-

ever the mouse entered the arrow region, rather than forcing

the user to hold the mouse pointer in the region for a specific

duration, as is the case with buttons. This suggests that a

boundary-crossing or mouse-touch approach instead of

dwell-activated buttons might be more usable for R.

The ability to configure the user interface of Camera

Canvas was very important in the experiments in which R

participated. All three of the configuration options (toolbar

placement, button size, and sliding speed) were used to try

to provide the most usable layout for the user. R also

played the configuration games. He was able to understand

and complete both the butterfly (toolbar layout configura-

tion) and the balloon (button size configuration) games,

although the layouts of the buttons in both games could be

improved or ideally made configurable. The automated

recommendation system proposed a Vertical-Right layout

with buttons of size 160 9 160 pixels for the user. The user

was satisfied with these settings and chose to keep them for

the remainder of the experiment. Although the user liked

these settings, it is not known whether there were settings

12 Univ Access Inf Soc (2014) 13:5–22

123



that could have made the program even easier for him to

use because trying different settings was stopped after the

user indicated he was satisfied.

3.4.6 Conclusions

A great deal was learned from the user studies with G, C,

and R. Problems with the interface were seen that did not

arise when testing the software with users without dis-

abilities. Teenagers G and C enthusiastically embraced

Camera Canvas as a new canvas to express themselves.

While there were many features that R had trouble with,

could not use, or did not try, in general, the experiments

revealed a major improvement over the experiences R had

with the initial version of the software.

4 Development and evaluation of menu controller

Menu Controller was developed to retrofit existing appli-

cations with new graphical user interfaces in order to make

them more accessible for people with severe motor

impairments. Windows applications have menus that are

difficult to access by users with limited muscle control, due

to the size and placement of the menu entries. The goal of

Menu Controller is to take these entries and generate cus-

tomizable user interfaces that can be catered to the indi-

vidual user. Menu Controller accomplishes this by

harvesting existing menu items without the need to change

any existing code in these applications, and then by dis-

playing them to the user in an external toolbar that is more

easily accessible to people with motor impairments. The

main initial challenge in developing Menu Controller was to

find a method for harvesting menu items. Then, an appro-

priate way for displaying the harvested menu entries was

explored. An approach was chosen based on the two-part

sliding toolbar that had been developed for Camera Canvas.

The recommendations from an initial user study with

Menu Controller [6] let to an update of Menu Controller to

include additional features, namely the possibility to con-

trol the menus of additional Windows applications, support

for customizing the size of buttons, the possibility to

control the display behavior of the toolbar, and finally the

possibility for users to customize the location of the

toolbar.

4.1 Menu controller: re-rendering the user interface

of applications

Once Menu Controller has gained access to the menu

entries of an application (see next section), it can re-render

them in a way that enables users with limited motion

control to select them. A re-rendering approach was

developed that was based on the sliding toolbar design of

Camera Canvas [5]. The toolbar contains buttons that

represent the menu entries of the original interface of the

application.

When a user navigates to an application with a menu,

the user first sees the root entries of the menu. Similarly,

when Menu Controller first encounters an application, it

displays the root menu entries as a sequence of large

buttons (Fig. 7 top). When a user clicks on an entry in

the root menu of the application, a submenu is typically

displayed (Fig. 7 bottom). The same behavior is achieved

in Menu Controller. When one of the root buttons is

selected, a list of buttons for the associated submenu

replaces the root buttons, and so on. When a user is

navigating a menu, its submenus disappear when the user

clicks off of the menu. At this point, the user again sees

only the root menu entries. Menu Controller behaves in a

similar way: when a user clicks off of Menu Controller

and onto the main window of the application, Menu

Controller again renders the root menu entries of that

application.

Fig. 7 Top: Menu Controller re-rendering of top level menu of Eagle Aliens game [1] designed for Camera Mouse [32]. Bottom: Menu

Controller re-rendering of Play submenu in Windows Media Player 9 [45]

Univ Access Inf Soc (2014) 13:5–22 13

123



The sequence of large buttons displayed by Menu

Controller have a sliding functionality. The toolbar has two

arrow buttons: a ‘‘Prev’’ and a ‘‘Next’’ button that enable

the user to ‘‘slide’’ the toolbar across the screen, that is,

collectively moving the positions of the menu buttons on

the screen. As for Camera Canvas, the aim of the sliding

functionality is to help users who cannot reach certain areas

of the screen. For example, if a user cannot reach a button

at the far left of the screen, the user can click on the arrow

buttons and continually slide the toolbar, moving the button

toward the middle of the screen, until the button is within

the user’s reach.

4.2 Menu controller—harvesting menus of applications

It was decided to develop Menu Controller for the

Microsoft Windows operating systems because many of the

applications that users of mouse-replacement systems

desire to access run-on Windows. The initial version of

Menu Controller [6], written in C# code, can manipulate

the menu items of such Windows applications using the

Windows API [46]. The Windows API allows a program to

simulate any action that a user can accomplish with a

mouse or keyboard. Windows messages are sent to indi-

vidual items on a window (such as a menu item), and the

items respond to these messages in the same way that they

would respond to an actual action performed directly by the

user on that item, e.g., a click. This gives an external

program the power to control almost any aspect of any

window without knowledge of the inner workings of the

window itself. In the current scenario, Menu Controller is

the external program that controls the application that a

user with quadriplegia wants to access, for example, the

Windows calculator. To control the View submenu of the

Windows calculator (Fig. 8), the Menu Controller does not

need to access the calculator code itself.

While working on the first version of Menu Controller

[6], it was found that the MenuAPI [48] was unable to

control all menus. Specifically, it was assumed that there

were two types of menus: menus accessible via the

MenuAPI and menus accessible through a Microsoft

technology called Active Accessibility [28]. It was then

found that Active Accessibility has since been supplanted

by a newer .NET-supported technology called UI Auto-

mation [49], which according to Microsoft, ‘‘offers many

improvements over Active Accessibility.’’ The researchers

therefore decided to use UI Automation to support the

menus that they could not access through the MenuAPI,

instead of using Active Accessibility [6].

When Menu Controller is run, a timer is started. When

receiving a once-a-second ‘‘tick’’ event from the timer,

Menu Controller determines which window currently has

the focus. If no window currently has the focus, i.e., all

windows are minimized, Menu Controller does nothing and

simply waits for the next timer tick. If a window is found,

Menu Controller retrieves a handle that points specifically

to the menu of that window, reads the first level of the

menu, i.e., the part of the menu visible to the user prior to

clicking on any menu items, and stores information about

each first-level menu entry in a list. This list is then used to

dynamically create the buttons that are displayed to the

user within Menu Controller, the text of which is retrieved

from the menu items themselves. (Note that, while creating

each button, within each button, a handle to the menu itself

is stored, which was obtained along with the index of the

menu item the button is associated with.) At this point, the

user sees the first-level menu items in the Menu Controller

toolbar.

When the user clicks on buttons in the toolbar, the same

event handler is initiated for all of the buttons. What dif-

ferentiates the buttons from one another from the per-

spective of the button click handler is the data that Menu

Controller previously stored with each button, namely the

menu handle and the index of the menu associated with the

given button. With these two pieces of information, Menu

Controller makes a further WindowsAPI call to determine

whether the item is a submenu or an actual item that needs

to be clicked. If the former, Menu Controller follows the

same steps outlined above to read the menu items of the

submenu, and dynamically create buttons to be displayed,

but this time for the submenu. If the latter, the appropriate

information, in this case the handle to the menu along with

the index of the item to be clicked, is sent to the appro-

priate WindowsAPI methods to simulate the clicking of the

item.

Before any of the existing code was refactored to

incorporate UI Automation support, it was necessary to

ensure that the required changes would minimize code

divergence. In particular, the toolbar-building code should

not take two different paths: one for MenuAPI-enabled

windows and another for UI Automation-enabled windows.

The first step was to move all menu logic code into a

separate class, making the code that controls user interac-

tion and what the user sees in Menu Controller almost

entirely menu-type agnostic. This should make future

updates to the software easier.

Following are the details of how Menu Controller takes

slightly different paths for MenuAPI-enabled versus UI

Automation-enabled applications. First, Menu Controller

checks whether the in-focus window supports the Menu-

API. If it does, the code behaves the way it did in the

previous version of Menu Controller with respect to how

the menu entries are harvested. If entries are found, a

collection of ‘‘MenuItem objects’’ is created and stored.

If Menu Controller does not find that the window is

MenuAPI-enabled, a new code-path attempts to retrieve the

14 Univ Access Inf Soc (2014) 13:5–22

123



first-level menu using UI Automation. If this comes back

with menu entries, a similar list of objects is created, using

the generic UI Automation object that stores information

about each menu entry. The advantage of this approach is

that the code that controls all the toolbar logic, only has to

take different paths at two places, namely in the generic

click method that is invoked whenever a button on Menu

Controller is clicked, and when it is necessary to identify

the type of button that is being added to the toolbar. All

other code remains identical for both approaches. Again,

this decision should help in future efforts to maintain or

update the code-base.

4.3 Menu controller: initial user study

The initial Menu Controller user study included User R, the

non-verbal adult with quadriplegia (Fig. 6). The same

experimental setup as described in Sect. 3.4 was used. User

R was asked to play with Eagle Aliens, a game where the

user moves the mouse pointer around the screen to ‘‘shoot

aliens’’ (Fig. 7 left), and Eagle Paint, a freeform line

drawing program. Both are popular programs designed for

use with Camera Mouse [1] that the participant was already

familiar with. It was explained to User R that the goal of

Menu Controller to allow a user to operate more of the

features of the program by himself. The participant espe-

cially liked playing Eagle Aliens and seemed excited at the

prospect of starting a new game or adjusting the difficulty

level by himself. Functionality such as starting a new game

or adjusting the difficulty level is only available via the

menu of Eagle Aliens and could not be accessed by the

participant. Only when Eagle Aliens was used together

with Menu Controller could the participant access the

functionality.

When playing Eagle Aliens, R was able to use Menu

Controller to open the File menu and start a new game and

adjust the time limit and difficulty settings of the game. It

was difficult for R to reach buttons that Menu Controller

displayed in the top left corner of the screen. The

researcher explained to R how the arrow buttons allowed

him to move the buttons toward the center of the screen to

be more within his reach. After a couple of explanations on

how the movement worked, selecting the correct arrow

became more intuitive for R. He seemed to like the idea of

the arrow buttons, but due to their placement, they seemed

to do more harm than good. Because of their close prox-

imity to the menu buttons, R often had to pass over an

arrow button to get to a menu button. Doing this would

sometimes cause the menu buttons to slide, shifting his

intended target. It became clear that moving the arrow

buttons farther from the menu buttons, or even to a dif-

ferent area of the screen, so that they are not as easily

triggered by mistake, was a much needed change.

Although User R was able to hit some of the buttons, in

general, it was difficult for him to make movements to

reach the top of the screen. To try to help R, the researcher

re-initialized Camera Mouse and adjusted the mouse

movement gain settings, but R still had difficulties. It

would be beneficial for R if the Menu Controller could be

moved to a different area of the screen. Also, the buttons on

the Menu Controller were too close together, so when R

tried to click on a button he would often click neighboring

buttons by mistake. It would be very helpful for him to be

able to adjust the button size and space between buttons at

runtime.

When User R clicked on the appropriate Menu Con-

troller button to adjust the difficulty level or time parameter

of the game, no feedback was provided to show that the

click was successful, and so the participant would continue

trying to click the same button over and over. Menu

options to adjust settings, such as ‘‘Difficulty’’ or ‘‘Time,’’

presented R with a list of options, only one of which could

be selected. In the original Windows style menu of Eagle

Aliens (outside of Menu Controller), when the user clicks

to select an option, a checkmark appears next to that option

to signify that the option is selected (Fig. 8). However, in

the version of Menu Controller used here, there was not an

equivalent means to provide this type of feedback.

Several times during the experiment, the user acciden-

tally clicked outside the application window, causing Menu

Controller to automatically hide itself. It would be bene-

ficial if, when started, Menu Controller automatically

resized itself and the application window to take up the

whole screen to prevent this from happening.

In using Eagle Paint, the participant was able to launch

some menu items such as changing the background color to

Fig. 8 Top: The View submenu of the Microsoft Windows 7

Calculator [47] program. The menu entries are small and closely

grouped together, making them difficult to access using a video-based

mouse-replacement system. Bottom: Automatic re-rendering of the

View submenu by Menu Controller

Univ Access Inf Soc (2014) 13:5–22 15

123



black, but still had the same problems as when using Eagle

Aliens. At this point, in the experiments, R was feeling

fatigued, so it was even more tiring for him to make the

movements required to reach the Menu Controller at the

top of the screen.

A lot was learned from R’s participation in the user

experiment, his interaction with Menu Controller and the

two application programs. The areas where improvements

were necessary were identified. It was very encouraging to

see R’s positive reaction to the software despite the diffi-

culties he had in using it, providing further motivation to

develop a new version of the program as usable as possible.

4.4 Menu Controller: changes to improve usability

From the first user study, it was apparent that the one-size-

fits-all toolbar the initial version of Menu Controller dis-

played was sufficiently accessible to some users with

severe motor impairments. The program re-rendered the

toolbar at the top of the screen with buttons that did not

have spacing between them and hard-coded button size.

The next priority was therefore to provide more options for

the way Menu Controller displays its toolbar and buttons.

Three areas that needed customization were identified: (1)

button sizes and spacing between buttons should be cus-

tomizable; (2) because button size would be customizable,

a different display behavior for the toolbar was needed,

e.g., the toolbar should not take up more and more room as

the button size increased; and (3) the toolbar should have

the ability to be placed at different screen locations

depending on user preference. The first step in making the

above options customizable was to create a settings page

for Menu Controller, which gives users the ability to adjust

the button size, choose the display behavior of Menu

Controller, and to customize the location of the toolbar.

The benefits of each of these customizations are discussed

below.

4.4.1 Button size customization

Having the ability to adjust the button size allows users

with less severe motor impairments to choose smaller

buttons that do not take up as much ‘‘screen real estate.’’

However, those who so desire can make the buttons much

larger, making them more accessible, but at the cost of

losing more screen real estate (a solution to this problem is

explained below).

4.4.2 Auto-hiding the toolbar

Giving the user more options for the behavior of the toolbar

became critical, after the ability to make buttons larger had

been provided. A key breakthrough to compensate for

larger buttons was the idea of having a collapsible (or auto-

hiding) toolbar that only appears in full when a user

requires it. If the user chooses the auto-hide option from

the settings page, the toolbar is displayed at the top of the

screen as a thin strip. In addition, there is now an indicator

on the toolbar that tells the user whether or not the active

window is supported by Menu Controller (Fig. 9, left).

This feature provides a visual indicator to the user that she

need not try to access Menu Controller in cases where the

in-focus window is not supported. If the window is sup-

ported, however, the user can move the mouse cursor on

top of Menu Controller’s thin strip, causing Menu Con-

troller (with all the buttons, etc.) to appear (Fig. 9, right).

This feature allows the user to make the buttons as large as

needed without losing valuable ‘‘screen real estate.’’

4.4.3 Automatically resizing program windows

Another feature available from the ‘‘display behavior’’ drop-

down of the settings page is the ability to have windows auto-

resize in order to fit in the area directly below the toolbar. This

feature is especially useful for users who either have a large

Fig. 9 Left: Display behavior set to ‘‘Auto-hide Menu Controller’’ for

Eagle Aliens game. The mouse pointer (not shown) is not on Menu

Controller, so Menu Controller is in minimized mode at the top of the

screen. Right: Display behavior set to ‘‘Auto-hide Menu Controller.’’

The pointer (not shown) has moved on top of Menu Controller, so

Menu Controller becomes activated. Once the pointer moves off of

Menu Controller, Menu Controller minimizes

16 Univ Access Inf Soc (2014) 13:5–22

123



monitor (and do not wish to Menu Controller to auto-hide its

toolbar) or choose a small-enough button size so that the

toolbar does not take up too much room on the screen. With the

first version, it was noticed that sometimes windows would

appear either under or over the toolbar. This could become a

nuisance to users who wish to either reach an area of the

current program covered by Menu Controller or conversely

users who are unable to reach Menu Controller because the

in-focus window is covering the toolbar. By resizing the

window to take up the area directly below Menu Controller

(Fig. 10 left), the above issues are resolved. An additional

benefit is that the user is now less likely to accidentally click

off of the window with which he is working. In essence, this

feature provides a ‘‘maximize’’ option for the in-focus win-

dow within the confines of the toolbar of Menu Controller.

4.4.4 Customizing toolbar location

The ability to place the toolbar in other locations on the

screen was something the researchers deemed necessary

after conducting the first user study. The user found it

difficult to lift his head to make the mouse go to the top of

the screen. For this reason, it was decided to make the

location of the toolbar customizable, following an approach

similar to Camera Canvas. Now, the user can select from

the toolbar orientations: Top (default), Left (Fig. 10 right),

Right, and Bottom (if Bottom is selected, it is recom-

mended that the Windows taskbar be set to auto-hide).

4.4.5 Additional changes of Menu Controller

Additional noteworthy changes are now discussed that were

incorporated into the latest release of Menu Controller.

First, a space was added between the buttons that is

equal to half the size of the buttons themselves. This pro-

vides the user with ‘‘rest areas’’ that they can place the

mouse pointer on without risking undesired clicks to the

buttons themselves. The first version of Menu Controller

included buttons without sufficient spacing, making it easy

for users to unintentionally click buttons while deciding

what action they wanted to perform next.

Second, it was decided to swap the left/right arrow

buttons to make them work in what is called ‘‘curtain

style’’—i.e., instead of clicking left and right to have the

buttons move left and right, respectively, the left/right

buttons now draw buttons to the right and left, respectively,

which seems to be a more intuitive approach judging from

the initial difficulties in understanding the behavior of the

toolbar encountered by the user in the first case study. Also,

changes were made to make the buttons, when moved from

left to right, align themselves with the left/right arrow

buttons, providing a ‘‘cleaner’’ more grid-like look to the

toolbar.

Third, an issue was discovered when resizing was

added: the smaller button sizes caused the text to become

illegible. To solve this problem, tooltip now appears when

the user places the mouse pointer over a given button. This

way, users can have smaller buttons, while still being able

to see the button text.

Fourth, another issue to be fixed after the first user study,

was the fact that it was unclear to the user whether a button

was actually clicked. This is because Camera Mouse [32]

simulates a mouse click after a period of inactivity (i.e.,

mouse movement). Since the user is not actually clicking

the mouse directly, the original version of Menu Controller

did not make it obvious that a button had actually been

clicked. This was especially pronounced when a button did

not actually cause an action to occur in the active window,

but was a toggle or check-mark menu entry, such as in the

case of Eagle Alien’s difficulty selector. Initially, it was

hoped was that the type of menu entry could be detected

(e.g., action versus toggle versus checkmark) and the but-

tons could be colored differently to show the user whether

menu entries were checked or unchecked or indicate which

button in a group (i.e., a toggle button) was currently

selected. However, this proved to be more difficult than

initially thought. The menu entries do not seem to refresh

themselves internally when they receive a window message

from Menu Controller in the same way they do when they

are clicked directly by the user from the menus themselves.

To provide a compromise and still give the user an indi-

cator of some type, the last-clicked button highlights,

Fig. 10 Left: When the display

behavior of Menu Controller is

set to ‘‘Auto-resize compatible

windows,’’ Menu Controller

automatically resizes Windows

Calculator to fill up the

remaining space on the screen

so that the user cannot click off

of the program accidentally.

Right: The orientation of Menu

Controller set to ‘‘Vertical-

Left’’ with large buttons of size

175 9 175 pixels

Univ Access Inf Soc (2014) 13:5–22 17

123



which allows the user to see that something has been done

after the click, and avoids having the user click multiple

times expecting to see some visible change.

Finally, it is worth noting all settings are stored in the

settings page per Windows user. Windows computers can

be shared among several users, i.e., one user can log off

Windows, allowing another user to log in with a different

user name and password. The settings are stored for each

log-on, making the settings customizable to suit different

user’s needs.

4.5 Menu Controller: second user study

The participant of the second user study with Menu Con-

troller is the 16-year-old high school student with cerebral

palsy, User C, who had participated in the testing of

Camera Canvas. It was suggested to C that it might be

beneficial for him to try out Menu Controller, which could

potentially allow him to use more programs on his com-

puter through an interface that he is already familiar with

from Camera Canvas. In a subsequent session with C, he

was introduced to the Menu Controller project. The moti-

vation behind Menu Controller was explained to C,

focusing on how small menu entries were difficult to access

using the Camera Mouse, and C responded with ‘‘I can

imagine.’’ It was explained how the Menu Controller

interface was similar to the Camera Canvas sliding toolbar,

which C was already familiar with. The possibility of

adjusting, just like in Camera Canvas, the placement, ori-

entation, and size of the toolbar buttons, was explained,

and C thought that the idea was ‘‘cool.’’ As C was very

curious about how the software works, he was given a

high-level explanation of how Menu Controller harvests

menu entries and simulates commands.

The Eagle Aliens game was then opened. It was pointed

out how Eagle Aliens had a small menu at the top with the

options: ‘‘File,’’ ‘‘Time,’’ ‘‘Difficulty,’’ ‘‘Options,’’ and

‘‘Help’’ (Fig. 9). Menu Controller was launched in mini-

mized mode where it sits docked as a small strip at the top

of the screen and only displays its buttons when the user

puts the mouse over it. C was asked to try adjusting the

difficulty level of the game using Menu Controller. After it

was explained to C that the program was in minimized

mode and that he would have to hit the top of the screen for

Menu Controller to appear, he responded, ‘‘Oh, I got it.’’

User C was able to reach the top of the screen with the

mouse pointer and activate Menu Controller. He said, ‘‘I

want to try [difficulty level] ’Hard,’ ’’ and proceeded to

select the ‘‘Hard’’ button that represented these actions

using Menu Controller (Fig. 11).

Next C was asked to try Menu Controller with an

existing program not designed for use with Camera Mouse.

The Windows Calculator program was opened, showing

him how Menu Controller also grabbed the menu entries of

the calculator. C was then asked to try changing the view of

the calculator to the scientific view. He was able to again

activate Menu Controller by going to the top of the screen,

click on the ‘‘View’’ button and then click on the ‘‘Scien-

tific’’ button in the sub-menu of the ‘‘View’’ button

(Fig. 10 right).

4.6 Menu controller: limitations

Considerable efforts were expended on trying to make

Menu Controller work with the browsers Internet Explorer

[50] and Firefox [51]. Although a certain measure of suc-

cess was achieved with Internet Explorer, in that Menu

Controller was enabled to access the first-level menu of

Internet Explorer, accessing any submenus or enabling

Menu Controller to simulate clicks on any of the menu

entries was not possible. These submenus and menu entries

do not seem to have been made available to UI Automa-

tion. The most pressing remaining issue yet to be resolved

is therefore the ability of Menu Controller to work with a

web browser.

The current version of Menu Controller does not provide

a way for the user to go back to a parent submenu. Once a

submenu is displayed, the only way for the user to get pack

to the parent menu is to click off of Menu Controller onto

Fig. 11 Top: A user with motor impairments (User C) playing with

the Eagle Aliens game using Menu Controller. Bottom: A user with

quadriplegia (User R) adjusting the difficulty level of the Eagle Aliens

game using Menu Controller

18 Univ Access Inf Soc (2014) 13:5–22

123



the application window and then locating the parent again

by clicking through Menu Controller.

One idea that could be beneficial for Menu Controller

would be to add some type of visual indicator to show the

user where in the menu hierarchy they are. Currently, the

user could be several levels deep and not know where he or

she actually is.

5 Discussion

The number of systems that analyze the facial gestures of

computer users has been growing explosively [52]. Formal

evaluation of such systems with user studies has been

criticized as insufficient [53]. Empirical user studies, if

conducted at all, generally do not include users with

motion disabilities. Mouse-replacement systems that have

been tested with people with motion impairments are Sina

from Spain [34, 54] and Nouse from Canada [33]. For other

promising research systems [55–60], tests with users with

motion impairments have not been conducted but are

reportedly planned.

Studies have found that adoption of software to assist

computer users with severe motor impairments is some-

times difficult. Dawe [61] found that the rate that some of

this software is abandoned due to various factors (including

cost and complexity) is estimated to be upwards of 35 %.

The goal in designing the systems described in this paper

was therefore to make them intuitive and easy to use in

order to attract a user community that will find it beneficial.

Moreover, it was important to involve individuals in their

user studies who belong to the user population for which

the software is designed. Users with severe motor impair-

ments who did not have cognitive disabilities were

involved. Plans exist for future studies to include users with

a limited level of cognitive functioning.

Camera Canvas and Menu Controller will be freely

available to the extensive worldwide Camera Mouse user

base [62] for download from the Camera Mouse research

website [63]. The authors hope to encourage individuals

with motion impairments to explore whether they can gain

access to applications that they had not been able to use

previously.

It is important for the users to have a consistent, cus-

tomized, and accessible user experience with the applica-

tions they try out. The great variety in human–computer

interfaces, often presenting difficulties for users without

disabilities, bring even more frustration for users with

disabilities who may have to customize their input devices

for every application [16]. With Menu Controller, the hope

is to alleviate some of this frustration by reducing the

number of different application interfaces that users will

have to customize their input devices against.

Initial user studies with Camera Canvas and Menu

Controller helped to identify some of the areas where the

first versions of the software needed improvement. Sub-

sequent experiments with new versions showed that the

usability of both programs was improved upon by focusing

on the button placement and the location of the toolbar,

along with behavior customizations to compensate for

button size and distance, and, for Menu Controller,

increasing the amount of programs it supports. The current

versions of Camera Canvas and Menu Controller give users

the ability to customize their interfaces to suit some of their

needs.

A priority with the additional menu support effort

described above was to make all the applications currently

downloadable from the Camera Mouse website [42]

accessible from Menu Controller. The popular text input

programs Midas Touch Keyboard and Staggered Speech,

which were not accessible with the original version of

Menu Controller, were of particular concern. While

working through these and also trying to make the UI

Automation-enabled Menu Controller work on other win-

dows that did not previously work with Menu Controller

(such as Windows Explorer and Internet Explorer), it was

observed that, unlike the windows that support the Menu-

API, windows that use an alternative menu type do not

behave in a generic way. Tweaks are needed to make the

menus visible from Menu Controller, in some cases on a

per-application basis.

6 Conclusions and future work

The user studies showed that the techniques introduced in

this paper can improve GUIs so that people with severe

motion impairments, who use assistive input devices, can

interact with the GUIs successfully. The most important

contribution of this work was the concept of retrofitting

GUIs via sliding menubars. The process is automatic and

adaptive, reducing the need of assistance of caregivers with

the software setup. The strategies to simulate clicking-and-

dragging and clicking-and-holding interactions, provide

visual feedback, and reduce accidental selection commands

were also successful with users with motor impairments.

The effort in creating Menu Controller has focused on

the Windows environment. However, employing image

processing techniques similar to the systems mentioned in

the Related Works section [26, 27, 29] could enable the

development of an accessibility tool that is platform

independent. While the pointer-targeting techniques

described in the Related Works section may be helpful to

users with motor impairments, they do not provide much

added benefit when used with targets that are small and

close together, such as those in menu entries. Using these

Univ Access Inf Soc (2014) 13:5–22 19

123



techniques in conjunction with the user interface created by

Menu Controller might increase their utility for these users.

Another effort to improve Menu Controller would be to

handle other types of user interface widgets in addition to

menus.

Ongoing work with Camera Canvas involves adding

additional features to the program, such as the much

requested fill and clip-art stamps, and continuing to look

into simple games. Not only were games popular with the

users for their entertainment value, they also provided

valuable information about the user. The games in Camera

Canvas were used to recommend user interface settings by

automatically analyzing the movement abilities of a user

during the game. This use of gamification was a good step

toward a method to determine automatically how to adapt

an interface so that it can provide a user experience that, in

some sense, is optimal. Analyzing game performance every

so often could provide metrics on how users’ abilities

change over time. To avoid being intrusive, Camera Can-

vas would ask and not require users to play these perfor-

mance-measuring games. This software feature may be

particularly beneficial for individuals who suffer from a

degenerative disease that increasingly limits their motion

abilities. Future work in this area could be informed by the

experience in designing gaze-controlled games reported in

the literature [64, 65].

In Camera Canvas, other alternatives to traditional UI

elements were experimented with, e.g., Choice Boxes and

Move Arrows as alternatives to sliders. Future work could

be in the same line as Menu Controller—trying to take

these alternative elements out of Camera Canvas and

generalizing them into tools that can be used with existing

software to make it more usable. For example, instead of

interacting with a slider on a webpage, a user could launch

a tool that presented a set of Move Arrows. The user of a

mouse-replacement system could then rely on the more

usable Move Arrows, which would send the same com-

mands as if they were using the scrollbar of their

application.

Finally, the interaction techniques discussed here could

be incorporated into the mouse-replacement systems cur-

rently used by people with severe motion impairments, for

example, Camera Mouse. This would help users to deter-

mine the most appropriate interface settings and empower

them to adjust the settings themselves instead of relying on

a caregiver.

Acknowledgments The authors would like to thank the participants

of the user studies for their valuable feedback in helping improve the

software. They would also like to thank the reviewers of our PETRA

2011 submission [6] for their helpful comments, and Robin Berghaus,

Mikhail Breslav, Samuel Epstein, Nathan Fuller, James Gips, Fletcher

Hietpas, Eric Missimer, Tessa Skinner, Ashwin Thangali, Diane

Theriault, Gordon Towne, and Zheng Wu for their assistance during

user studies and throughout the project. The human-subject research

study has been approved by the Boston University IRB, and all par-

ticipants (and their parents, if they are minors) consented to partici-

pate and release their photographs for publication. Funding from the

National Science Foundation (HCC grants IIS-0910908, IIS-0713229,

and IIS-0855065) and from the Boston University Undergraduate

Research Opportunities Program is gratefully acknowledged.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Betke, M.: Intelligent interfaces to empower people with dis-

abilities. In Nakashima H., Augusto J.C., Aghajan H. (eds.),

Handbook of Ambient Intelligence and Smart Environments.

Springer, New York (2009)

2. Mcmurrough, C., Ferdous, S., Papangelis, A., Boisselle, A.,

Makedon, F.: A survey of assistive computing devices for cere-

bral palsy patients. In: The 5th ACM International Conference on

Pervasive Technologies Related to Assistive Environments

(PETRA 2011), Heraklion, Crete, Greece, pp. F1:1–F1:8. ACM,

June (2012)

3. Keates, S.: Motor impairments and universal access. In: Steph-

anidis Constantine (ed.), The Universal Access Handbook. CRC

Press, Cleveland, pp. 5–1–5–12 (2009)

4. Kim, W.-B., Kwan, C., Fedyuk, I., Betke, M.: Camera canvas:

Image editor for people with severe disabilities. Technical Report

2008-010, Computer Science Department, Boston University,

May (2008)

5. Kwan, C., Betke, M.: Camera canvas: Image editing software for

people with disabilities. In: Proceedings of the 6th International

Conference on Universal Access in Human–Computer Interac-

tion: Users Diversity—Volume Part II (UAHCI’11), Orlando,

Florida, pp. 146–154. Springer, Berlin, July (2011)

6. Paquette, I., Kwan, C., Betke, M.: Menu Controller: Making

existing software more accessible for people with motor

impairments. In The 4th ACM International Conference on Per-

vasive Technologies Related to Assistive Environments (PETRA

2011), Heraklion, Crete, Greece, pp. 2:1–2:8. ACM, May (2011)

7. Worden, A., Walker, N., Bharat, K., Hudson, S.: Making com-

puters easier for older adults to use: Area cursors and sticky

icons. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pp. 266–271 (1997)

8. Grossman, T., Balakrishnan, R.: The bubble cursor: Enhancing

target acquisition by dynamic resizing of the cursor’s activation

area. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pp. 281–290 (2005)

9. Hurst, A., Mankoff, J., Dey, A.K., Hudson, S.E.: Dirty desktops:

Using a patina of magnetic mouse dust to make common inter-

actor targets easier to select. In Proceedings of the 20th Annual

ACM Symposium on User Interface Software and Technology

(UIST’07), pp. 183–186 (2007)

10. Spakov, O., Majaranta, P.: Scrollable keyboards for casual eye

typing. PsychNol. J. 7(2), 159–173 (2009)

11. Akram, W., Tiberii, L., Betke, M.: Designing and evaluating

video-based interfaces for users with motion impairments. Uni-

versal Access in the Information Society. In review

12. Andrews, J.H., Hussain, F.: Johar: A framework for developing

accessible applications. In: Proceedings of the 11th International

ACM SIGACCESS Conference on Computers and Accessibility

(Assets ’09), pp. 243–244 (2009)

20 Univ Access Inf Soc (2014) 13:5–22

123



13. Olsen Jr., D.R., Hudson, S.E., Verratti, T., Heiner, J.M., Phelps,

M.: Implementing interface attachments based on surface repre-

sentations. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems: The CHI is the limit (CHI’99),

pp. 191–198 (1999)

14. Magee, J.J.: Adaptable Interfaces for People with Motion Dis-

abilities. PhD thesis, Computer Science Department, Boston

University, September (2011)

15. Wobbrock, J.O., Kane, S.K., Gajos, K.Z., Harada, S., Froehlich,

J.: Ability-based design: concept, principles and examples. ACM

Trans. Access. Comput. 3, 9:1–9:27 (2011)

16. Shein, F.: Human interface design and the handicapped user. In:

Proceedings of the Computer–Human Interaction Conference,

pp. 292–293. ACM (1986)

17. Magee, J.J., Betke, M.: HAIL: hierarchical adaptive interface

layout. In: K. Miesenberger et al., (eds.) 12th International

Conference on Computers Helping People with Special Needs

(ICCHP 2010), Vienna University of Technology, Austria, Part 1,

LNCS 6179, pp. 139–146. Springer, Berlin, July (2010)

18. Magee, J.J., Epstein, S., Missimer, E., Betke, M.: Adaptive

mappings for mouse-replacement interfaces. In: The 12th Inter-

national ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS 2010), p. 3. Orlando, Florida, USA,

October (2010)

19. Magee, J.J., Epstein, S., Missimer, E.S., Kwan, C., Betke, M.:

Adaptive mouse-replacement interface control functions for users

with disabilities. In Proceedings of the 6th International Confer-

ence on Universal Access in Human–Computer Interaction: Users

Diversity—Volume Part II (UAHCI’11), Orlando, Florida,

pp. 332–341. Springer, Berlin, July (2011)

20. Gajos, K.Z., Weld, D.S., Wobbrock, J.O.: Automatically gener-

ating personalized user interfaces with Supple. Artif. Intell. 174,

910–950 (2010)

21. Connor, C., Yu, E., Magee, J., Cansizoglu, E., Epstein, S.,

Betke, M.: Movement and recovery analysis of a mouse-

replacement interface for users with severe disabilities. In:

Proceedings of the 13th International Conference on Human–

Computer Interaction (HCI International 2009), pp. 1–10. San

Diego, CA, July (2009)

22. Donegan M. (2012) Features of gaze control systems. In: Maja-

ranta P., Aoki H., Donegan M., Hansen D.W., Hansen J.P.,

Hyrskykari A., Räihä K. (eds) Gaze Interaction and Applications

of Eye Tracking: Advances in Assistive Technologies. IGI Glo-

bal, pp. 28–34

23. Hutchings, D.R., Stasko, J.: Mudibo: multiple dialog boxes for

multiple monitors. In: CHI ’05 Extended Abstracts on Human

Factors in Computing Systems, pp. 1471–1474 (2005)

24. Tan, D.S., Meyers, B., Czerwinski, M.: WinCuts: manipulating

arbitrary window regions for more effective use of screen space.

In CHI ’04 Extended Abstracts on Human Factors in Computing

Systems, pp. 1525–1528 (2004)

25. Stuerzlinger, W., Chapuis, O., Phillips, D., Roussel, N.: User

Interface Façades: Towards fully adaptable user interfaces. In:

Proceedings of the 19th Annual ACM Symposium on User

Interface Software and Technology (UIST ’06), pp. 309–318

(2006)

26. Amant, R., Riedl, M.O., Ritter, F.E., Reifers, A.: Image pro-

cessing in cognitive models with SegMan. In: Proceedings of the

11th International Conference on Human–Computer Interaction

(HCII International 2005), pp. 1–10. July (2005)

27. Hurst, A., Hudson, S.E., Mankoff, J.: Automatically identifying

targets users interact with during real world tasks. In: Proceedings

of the 14th International Conference on Intelligent User Inter-

faces (IUI’10), pp. 11–20 (2010)

28. Active Accessibility. Retrieved July 23, 2012, from http://

msdn.microsoft.com/en-us/library/aa291313%28VS.71%29.aspx

29. Dixon, M., Fogarty, J.: Prefab: Implementing advanced behaviors

using pixel-based reverse engineering of interface structure. In:

Proceedings of the 28th International Conference on Human

Factors in Computing Systems (CHI ’10), pp. 1525–1534 (2010)

30. Hornof, A.J., Cavender, A.: EyeDraw: Enabling children with

severe motor impairments to draw with their eyes. In: Proceed-

ings of ACM Conference on Human Factors in Computing Sys-

tems (CHI), pp. 161–170 (2005)

31. Harada, S., Wobbrock, J.O., Landay, J.A.: Voicedraw: a hands-

free voice-driven drawing application for people with motor

impairments. In: Proceedings of the 9th International ACM

SIGACCESS Conference on Computers and Accessibility,

Tempe, Arizona, pp. 27–34 (2007)

32. Betke, M., Gips, J., Fleming, P.: The Camera Mouse: Visual

tracking of body features to provide computer access for people

with severe disabilities. IEEE Trans. Neural Syst. Rehabil. Eng.

10(1), 1–10 (2002)

33. Gorodnichy, D., Dubrofsky, E., Ali, M.: Working with computer

hands-free using Nouse perceptual vision interface. In: Proceed-

ings of the International CRV Workshop on Video Processing

and Recognition (VideoRec’07), Montreal, Candada, Canada,

May (2007). NRC.

34. Manresa-Yee, C., Varona, J., Perales, F.J., Negre, F., Muntaner, J.J.:

Experiences using a hands-free interface. In: Proceedings of the

10th International ACM SIGACCESS Conference on Computers

and Accessibility, pp. 261–262, New York, NY, (2008). ACM

35. SmartNAV by NaturalPoint. Retrieved July 23, (2012),

http://www.naturalpoint.com/smartnav

36. The COGAIN website. Maintained by the Communication by

Gaze Interaction Association for promotion of research and

development in the field of gaze-based interaction in computer-

aided communication and control. Retrieved July 23, 2012,

http://www.cogain.org

37. Ashmore, M., Duchowski, A.T., Shoemaker, G.: Efficient eye

pointing with a fisheye lens. In: Proceedings of Graphics Inter-

face (GI ’05), pp. 203–210 (2005)

38. The COGAIN eye-tracker website. List of commercial eye

tracking systems used for controlling a computer or as commu-

nication aids by people with disabilities and open-source and

freeware software for gaze and eye tracking and eye movement

analysis. Retrieved July 23, (2012), http://www.cogain.org/

wiki/Eye_Trackers

39. Majaranta, P.:Communication and text entry by gaze. In: Maja-

ranta P., Aoki H., Donegan M., Hansen D.W., Hansen J.P.,

Hyrskykari A., Räihä K. (eds) Gaze Interaction and Applications

of Eye Tracking: Advances in Assistive Technologies, pp. 63–77.

IGI Global (2012)

40. Majaranta, P., Bates, R., Donegan, M.: Eye tracking. In: Steph-

anidis Constantine (eds.), The Universal Access Handbook. CRC

Press, Cleveland, pp. 36–1-36–17 (2009)

41. Prendinger, H., Hyrskykari, A., Nakayama, M., Istance, H., Bee,

N., Takahasi, Y.: Attentive interfaces for users with disabilities:

eye gaze for intention and uncertainty estimation. Univers.

Access Inf. Soc. 8(4), 339–354 (2009)

42. The Camera Mouse website. Retrieved July 23, 2012,

http://www.cameramouse.org (2012)

43. Jacob, R.J.K.: What you look at is what you get. Computer 26(7),

65–66 (1993)

44. Dragon speech recognition software. Retrieved July 23, 2012,

from http://www.nuance.com/dragon

45. Windows Media Player. Windows Media Player—Microsoft

Windows. Retrieved July 23, 2012, from http://windows.

microsoft.com/en-US/windows/products/windows-media-player

46. Windows development (Windows). Retrieved July 23, 2012,

from http://msdn.microsoft.com/en-us/library/ee663300%28v=

VS.85%29.aspx

Univ Access Inf Soc (2014) 13:5–22 21

123

http://msdn.microsoft.com/en-us/library/aa291313%28VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa291313%28VS.71%29.aspx
http://www.naturalpoint.com/smartnav
http://www.cogain.org
http://www.cogain.org/wiki/Eye_Trackers
http://www.cogain.org/wiki/Eye_Trackers
http://www.cameramouse.org
http://www.nuance.com/dragon
http://windows.microsoft.com/en-US/windows/products/windows-media-player
http://windows.microsoft.com/en-US/windows/products/windows-media-player
http://msdn.microsoft.com/en-us/library/ee663300%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ee663300%28v=VS.85%29.aspx


47. Calculator—Windows 7 features - Microsoft Windows. Retrieved

July 23, 2012, from http://windows.microsoft.com/en-US/

windows7/products/features/calculator

48. Microsoft Corporation. Menu functions. Retrieved July 23, 2012,

from http://msdn.microsoft.com/en-us/library/ff468865%28v=

VS.85%29.aspx, December (2010)

49. UI Automation Overview. Retrieved July 23, 2012, from

http://msdn.microsoft.com/en-us/library/ms747327.aspx

50. Internet Explorer - Microsoft Windows. Retrieved July 23,

2012, from http://windows.microsoft.com/en-US/internet-explorer/

products/ie/home

51. Mozilla Firefox web browser. Retrieved July 23, 2012, from

http://www.mozilla.com/en-US/firefox/fx/

52. The Facial Analysis Homepage. Retrieved July 23, 2012,

http://mambo.ucsc.edu/psl/fanl.html (2012)

53. Ponweiser, W., Vincze, M.: Task and context aware performance

evaluation of computer vision algorithms. In: International Con-

ference on Computer Vision Systems: Vision Systems in the Real

World: Adaptation, Learning, Evaluation. Bielefeld, Germany

(ICVS 2007) (2007)

54. Varona, J., Manresa-Yee, C., Perales, F.J.: Hands-free vision-

based interface for computer accessibility. J. Netw. Comput.

Appl. 31(4), 357–374 (2008)

55. Porta, M., Ravarelli, A., Spagnoli, G.: ceCursor, a contextual eye

cursor for general pointing in windows environments. In: Pro-

ceedings of the 2010 Symposium on Eye-Tracking Research and

Applications (ETRA ’10), pp. 331–337 (2010)

56. Kim, H., Ryu, D.: Computer control by tracking head movements

for the disabled. In: 10th International Conference on Computers

Helping People with Special Needs (ICCHP), Linz, Austria,

LNCS 4061, pp. 709–715. Springer, Berlin (2006)

57. Kjeldsen, R.: Improvements in vision-based pointer control. In:

Proceedings of the 8th International ACM SIGACCESS Con-

ference on Computers and Accessibility, pp. 189–196, New York,

NY (2006). ACM

58. Loewenich, F., Maire, F.: Hands-free mouse-pointer manipula-

tion using motion-tracking and speech recognition. In: Proceed-

ings of the 19th Australasian Conference on Computer-Human

Interaction (OZCHI), pp. 295–302, New York, NY, (2007). ACM

59. Palleja, T., Rubion, E., Teixido, M., Tresanchez, M., del Viso,

A.F., Rebate, C., Palacin, J.: Simple and robust implementation of

a relative virtual mouse controlled by head movements. In Pro-

ceedings of the Conference on Human System Interactions,

pp. 221–224, Piscataway, NJ, 2008. IEEE.

60. Tu, J., Tao, H., Huang, T.: Face as mouse through visual face

tracking. Computer Vision and Image Understanding 108(1-2),

35–40 (2007)

61. Dawe, M.: Desperately seeking simplicity: how young adults

with cognitive disabilities and their families adopt assistive

technologies. In: Proceedings of the SIGCHI conference on

Human Factors in computing systems, CHI ’06, pp. 1143–1152.

New York, NY, USA, (2006). ACM

62. Camera Mouse technology reaches 100,000th download mile-

stone. Retrieved July 23, 2012. http://www.bc.edu/publications/

chronicle/TopstoriesNewFeatures/features/

cameramouse030410.html, published March 2010

63. The Camera Mouse Suite website. The Camera Mouse Suite is

the ‘‘beta version’’ or ‘‘research version’’ of Camera Mouse. It

is free and provides a suite of application programs.

http://cameramouse.bu.edu (2012)

64. Isokoski, P., Joos, M., Spakov, O., Martin, B.: Gaze controlled

games. Univers. Access Inf. Soc. 8(4), 323–337 (2009)

65. Istance, H., Hyrskykari, A., Immonen, L., Mansikkamaa, S.,

Vickers, S.: Designing gaze gestures for gaming: An investiga-

tion of performance. In Proceedings of the 2010 Symposium on

Eye-Tracking Research & Applications, ETRA ’10, pp. 323–330.

ACM (2010)

22 Univ Access Inf Soc (2014) 13:5–22

123

http://windows.microsoft.com/en-US/windows7/products/features/calculator
http://windows.microsoft.com/en-US/windows7/products/features/calculator
http://msdn.microsoft.com/en-us/library/ff468865%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ff468865%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms747327.aspx
http://windows.microsoft.com/en-US/internet-explorer/products/ie/home
http://windows.microsoft.com/en-US/internet-explorer/products/ie/home
http://www.mozilla.com/en-US/firefox/fx/
http://mambo.ucsc.edu/psl/fanl.html
http://www.bc.edu/publications/chronicle/TopstoriesNewFeatures/features/cameramouse030410.html
http://www.bc.edu/publications/chronicle/TopstoriesNewFeatures/features/cameramouse030410.html
http://www.bc.edu/publications/chronicle/TopstoriesNewFeatures/features/cameramouse030410.html
http://cameramouse.bu.edu

	Adaptive sliding menubars make existing software more accessible to people with severe motion impairments
	Abstract
	Introduction
	Related work
	Development and evaluation of camera canvas
	Sliding toolbar
	Camera canvas: photo-editing tools
	Camera canvas: drawing tools
	Camera canvas experiments, results, and conclusions
	Methodology of experiments and technical details
	Studies with users without physical impairments
	User study 1
	User study 2
	User study 3
	Conclusions


	Development and evaluation of menu controller
	Menu controller: re-rendering the user interface of applications
	Menu controller---harvesting menus of applications
	Menu controller: initial user study
	Menu Controller: changes to improve usability
	Button size customization
	Auto-hiding the toolbar
	Automatically resizing program windows
	Customizing toolbar location
	Additional changes of Menu Controller

	Menu Controller: second user study
	Menu controller: limitations

	Discussion
	Conclusions and future work
	Acknowledgments
	References


