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Abstract—1In this paper we propose a hybrid Probabilistic
RoadMap - Monte Carlo (PRM-MC) motion planner developed
under the general methodology of PRM. For a given robot, PRM
planners generally need to sample and connect a large number of
robot configurations in order to build a roadmap that reflects the
properties (such as the connectivity or energy landscape) of the
robot configuration space. The proposed PRM-MC planner uses
Monte Carlo simulation to generate and connect neighboring
robot configurations and uses PRM local planners to connect
the connected components generated from MC simulation. This
strategy follows the random sampling principle of PRM that leads
to the probabilistic completeness of the PRM-type randomized
planners, while exploring the continuity property of motion
planning constraints to improve the computation efficiency and
roadmap quality.

We apply the PRM-MC approach to closed chain motion
planning in this paper. Our current planner uses rotation pivots
as attempted Monte Carlo moves for 3D closed chains with
spherical joints. Pivot motions are developed as an efficient way
to deform closed chains without violating the closure constraints,
which have proved problematical for randomized approaches. We
will discuss how to identify feasible rotation pivots of kinematic
chains and utilize them in PRM-MC planning. Our simulation
results show that the PRM-MC closed chain planner can build
roadmaps with good connectivity and efficiently generate self-
collision-free closure configurations for closed chain systems with
many links and multiple loops.

I. INTRODUCTION

Motion planning problem [1] has been one of very ac-
tively studied problems in robotics community during the past
decades. Given a robot, its work environment with obstacles,
and start and goal configurations (positions and orientations),
the motion planning problem amounts to finding a valid transi-
tion path (a sequence of intermediate configurations) between
the two specified configurations. A valid path satisfies physical
laws and system limits associated with robot motion, such
as path continuity, collision avoidance and robot joint limits.
Some major robotics motivations for the study of the path plan-
ning problem are the paramount importance of efficient motion
planners in the realization of highly autonomous robots and in
the applications of robots in manufacturing, space exploration
and environment hazard cleaningup. Research interests in this
problem have been further fueled by the insight that the robot

motion planning problem shares much similarity with and
can serve as a model of diverse physical geometry problems
such as mechanical system disassembly, computer animation,
protein folding, ligand docking and surgery planning.

Motion planning is a very challenging problem that involves
complicated physical constraints and high-dimensional config-
uration spaces. The fastest existing complete (deterministic)
planner [2] takes time exponential in the number of degrees
of freedom of the robot. On the other hand, a class of
randomized planners proposed during the last decade have
successfully solved many previously unsolved problems. In
particular, Probabilistic RoadMap(PRM) methods [3], [4], [5],
[6], [7], [8], [9], [10] have been used successfully in high-
dimensional configuration spaces. The general methodology
of PRMS is to construct a graph (the roadmap) during pre-
processing to capture the connectivity of the valid subset of
the robot’s configuration space and then to query the roadmap
to find a path for a given motion planning task. Roadmap
vertices are randomly sampled configurations which satisfy
feasibility requirements (e.g., collision free), and roadmap
edges correspond to connections between ‘nearby’ vertices
found with simple local planning methods.

To get a roadmap with connectivity reflecting the topologi-
cal structure of the robot configuration space C, PRM planners
normally need to sample C quite extensively. This exten-
sive sampling also facilitates connection between roadmap
nodes and specified query configurations. Traditionally, the
C space is sampled randomly, and only valid (depending on
considered constraints) configurations and transitions between
nearby configuration pairs are used as roadmap nodes and
edges. The randomized approaches treat each node generation
independently and can be proved to be probabilistic complete.
Treating each node generation separately, however, does not
take advantage of the continuity property existing in most
constraints involved in robot motion planning problems. When
a robot configuration is collision free, stays within joint limits,
and/or has low energy, there is higher probability to find more
configurations with similar desirable traits in its neighborhoods
than in the neighborhoods of a configuration without these
properties.
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Fig. 1. Closure Configuration Generation Approaches

The PRM-MC planner proposed in this paper is designed
to explicitly take advantage of the continuous property and
generate nodes and edges in the neighborhoods of exist-
ing valid configurations. First the planner generates a small
number of seed configurations using random sampling or
some other more deliberate approaches. Then the planner uses
Monte Carlo simulation to generate and connect nodes in
the neighborhoods of the seed configurations to create graphs
reflecting the connectivity of the neighborhoods. Finally the
planner uses PRM type connection strategies [11] to try to
connect these different connected components generated from
Monte Carlo exploration.

In this paper we will show the application of this strategy
in closed chain motion planning to illustrate the effectiveness
of this approach. Closed chain systems arise in many practical
problems such as Stewart Platform [12], molecular rings [13],
reconfigurable robots [14], [15], and the closed chain system
formed by multiple robots grasping an object [16], [17].While
closed chains can offer advantages over open chains in terms
of the rigidity of the mechanism, motion planning and control
of closed chains is complicated by the need to maintain the
loops existing in closed chain structures, the so-called closure
constraints. Prior attempts in solving closed chain motion
planning problem have mainly used the strategy of breaking a
closed chain to at least two open chains and then try to satisfy
the closure constrains by making the end points of the open
chains meet. For example, in Figure 1, chain 1 and chain 2
are two open sub-chains of a closed chain and the frames E
and E5 attached to the breakpoint (the “end effector”) must
coincide to satisfy the closure constraints.

While this approach can be applied in the Monte Carlo
fashion, we propose to use rotation pivots as one efficient
way to deform 3D closed chain systems with spherical joints
to improve the successful rate of generating and connecting
closure configurations. Take the single loop structure shown
in the right half of Figure 1 as an example. One way to deform
this closure structure is to rotate the links on one side of the
axis, shown as a broken line in the figure, without moving
links on the other side. Figure 2 shows the rotation pivot
of a 7-link chain generated by our planer. The illustrated
motion is an example of the rotation pivots where different
subsets of a mechanism can rotate about an axis in different
directions and/or with different angles without breaking the
loops . The axes used in rotation pivots are called pivot axes
or just pivots for short. As rotations are rigid body motion
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Fig. 2. A Sample Pivot Motion Generated by Our Planner

preserving distances and angles among points, rotation pivots
can be proved [18] to preserve the closure constraints while
simultaneously inducing changes to the closure configurations
of the mechanism. We will discuss later how to identify
feasible rotation pivots of kinematic mechanisms and use them
in hybrid PRM-MC planning for closed chains.

Since closure constraints have been a major hurdle for
motion planning of closed chain systems and are intrinsic
properties of robot kinematic structures, we will consider
motion planning for closed chains without environment ob-
stacles. We will also fix one chain link to avoid the trivial
rigid body motion that does not cause deformation of closed
chain closure configurations. A roadmap generated under
these conditions can serve as a kinematic roadmap used in
a two-stage PRM closed chain planner [19], which populates
copies of the kinematic map to the environment and takes
environment obstacles into account at the second stage. Also as
in paper[19], we do consider the robot self-collision (collision
among robot links) avoidance constraints and only use self-
collision-free configurations and paths as roadmap nodes and
edges.

Our major motivation for this PRM-MC approach is to
integrate the strengths of both probabilistic roadmap and
Monte Carlo simulation methods. We use PRM to capture the
global structure of C and use MC to explore configuration
neighborhoods so as to improve the computation efficiency in
roadmap generation. Our simulation results indicate that the
PRM-MC planner can generate well-connected roadmaps for
closed chains with many links and multiple loops.

II. RELATED WORK ON PRMS AND CLOSED CHAIN
MOTION PLANNING

As a randomized planning approach, PRM has been proved
to be probabilistic complete. The theoretical analysis results
indicate that roadmaps generated by PRM planners can be
consistent with the topological structure of the configuration
space as long as PRMs has enough samples. In practice, many
PRM planners randomly generate a large number of robot
configurations in order to have a good coverage of the con-
figuration space. A large number of well-distributed roadmap
nodes can facilitate the connections among the nodes, improve
the connectivity of the roadmap, and make the connections of



the start and goal configurations to the roadmap easier. While
this approach works well for robots with relatively simple con-
straints such as rigid body robots and open chain (serial chain)
robots, a purely randomized approach is not computational
efficient for other systems such as flexible objects[20] and
proteins where low energy conformation are favored and for
closed chains[21] where loops existing in kinematic structures
need to be maintained, the so-called closure constraints.

Conceptually, a closed chain system can be viewed as a
linkage system consisting of a collection of open chains,
created from ‘breaking’ each closed chain, and then satisfy
the closure constraints, if any, by forcing the break points to
coincide. It has been proved [22], [23], [24] that the set of all
robot configurations satisfying closure constraints, denoted by
Ceclosure, forms an algebraic variety and a compact manifold
(except for robots with link lengths belonging to a finite set)
embedded in the higher-dimensional configuration space C.
(Note that C.jpsure is defined by the closure constraints only,
without any regard for other constraints such as collision
avoidance and joint limits.) This is roughly analogous to
embedding a two-dimensional surface or a one-dimensional
curve in a three dimensional space. The fact that the volume
measure of a low-dimensional entity in a high-dimensional
ambient space is zero is why the probability that a random
configuration in C satisfies the closure constraints is zero.

To the best of our knowledge, most motion planning al-
gorithms for closed chains follow the strategy of breaking
a closed chain to open sub-chains and then trying to make
the end points meet. The first work of adapting PRMs to
closed chains was reported in paper [21], where random
configurations in the ambient C space , which normally would
be in violation of closure constraints, were first generated and
then tried to be pushed onto C.jpsyre through a sequence of
randomized gradient descent. Only configurations satisfying
closure constraints (within certain tolerance) and avoiding
robot self-collision(collision among robot links) and collision
with environment obstacles were used in their roadmaps. A
two-stage kinematics-based PRM planner for closed chains was
reported in [19] where forward and inverse kinematics of links
were used to make the end points meet and a kinematic map,
with one robot linked fixed and environment obstacles ignored,
was first generated and then populated in the environment.
This work was motivated by the observation that robot closure
constraints are intrinsic to the robot mechanism. By generating
and populating kinematic maps, the planner could explore
Celosure more thoroughly and generate and connect closure
configurations in the environment more efficiently. To connect
two different closure configurations, the above two approaches
follow similar strategies: generate a sequence of intermedi-
ate configuration using some simple local planners such as
random walk and straight-line planners and then try to make
each intermediate configuration satisfy closure constraints via
random descent or kinematics computation. As reflected in the
simulation results in their paper, this connection approach has
not been very efficient, especially for closed chains with many
links.

The closed chain motion planning problems as described
above are closely related to the polygon reconfiguration prob-
lems that have been extensively studied in the geometry com-
munity. Briefly, the polygon reconfiguration problem studies
how to deform one 2D polygonal configuration to another
while maintaining the distance constraints between joints and
allowing 3D intermediate configurations. Clearly the polygon
reconfiguration problem can be viewed as one special type
of closed chain motion planning with both end configurations
being 2D polygonal configurations.

One type of polygon reconfiguration problems is the poly-
gon convexification problem addressing how to reconfigure
a polygon to a convex one through a sequence of motions.
Erdos[25] first proposed to use flip moves, which are rotations
about lines of support defined by the convex hull of the
polygon, to solve this problem, which was proved to work
by Nagy[26]. Since then, various problems related to polygon
convexification have been studied and different moves [22],
[24]have been identified. In particular, rotation pivots have
been regarded as one type of moves effective for polygon
reconfiguration. In brief, rotation pivots are rotations about
an axis, defined by a pair of non-adjacent vertices, by an open
subchain with the two vertices as the endpoints. Figure 2
shows the pivot motion of a 7-link chain generated by our
planer. See [27], [28], [29] for more information on polygon
reconfiguration.

Most of the prior work on polygonal reconfiguration allows
collision. When collision is allowed, it has been proved[22]
that any two closure configurations of any 3D closed chain
with fully rotatable spherical joints can be deformed from
one to the other. In other words, C.jpsure 0f 3D closed chains
with spherical joints is connected if it is not empty. Several
complete planners such as the line tracking planner [22]
have been developed for deforming polygons. Recently, with
their new results on the manifold properties of the Ciiosure
(corresponding to Cp;y, in their papers), Trinkle and Milgram
[23], [24] have developed a complete path planner on C jpsyre
for 2D closed chains with revolute joints and 3D closed chains
with spherical joints. Their planner uses accordion moves to
bring link by link to their goal configurations and is guaranteed
to find a transition path between two closure configurations for
any 3D closed chain system with spherical joints. Note that
as a planner on Cjosure, the accordion planner only considers
closure constraints without any regard for collision avoidance
and may generate paths involving robot self collision. It was
noted in their papers that the complete planner could be used as
a local planner for PRM in conjunction with collision checking
package to discard paths involving collisions. In addition, the
computational strategies in their planner can also be used for
the generation of closed chain configurations. For example,
after randomly generating a configuration for one of the open
chains created from breaking a closed chain, we can try to
make other chains to reach the same distance between the
base and the end-effectors and then use rigid motions to bring
the end points to a same point, a same strategy as used
in the accordion path planner. This approach, however, can



be computational intensive since the planner iteratively uses
Newton-type algorithm in solving closure constraints.

Closed chain deformations have also been studied by other
approaches such as mechanism singularity analysis, where
most of the work does not consider self-collision problems.
Please refer to papers[23], [24] for a more detailed discussion
of the prior work on closed chain path planning.

When collision is prohibited, researchers have identified
polygons that cannot be reconfigured to planar convex poly-
gons. This means that in general, the set of all polygonal
configurations consists of multiple connected components with
collision disallowed. It is recently proved[30] that the polygon
reconfiguration problem under collision-free constraints is P-
space hard.

This paper proposes a hybrid Probabilistic RoadMap -
Monte Carlo (PRM-MC) planner for closed chain systems. As
mentioned in section I, we will only consider motion planning
for closed chains with fixed bases and without environment
obstacles. This setting is also similar to what was used in the
development of the accordion planner. But as in the two stage
PRM closed chain planner [19], our planner considers the self-
collision avoidance constraints and only uses self-collision free
nodes and edges in roadmaps. The PRM-MC planner has been
designed to generate a good sampling of configuration space
while improving the node generate and connection efficiency,
two critical components in the construction of roadmaps. Our
basic idea is to take advantage of the continuity property in
the robot C space and use deliberate techniques as part of the
Monte Carlo exploration of configuration neighborhoods.

Some previously developed planners can be interpreted with
implicit usage of the neighborhood exploring concepts, one
trademark of Monte Carlo simulation. For example, more
sampling in the neighborhood of configurations in difficult
regions aimed at improving roadmap connectivity [8], [31]
and populating kinematic roadmaps in environments with
obstacles taken into account at the second stage of the closed
chain planner can be considered in such a fashion. Rapidly-
expanding Random Trees (RRT) [32] is one PRM variant that
grows a tree from each seed configuration with the expansion
of the tree biased toward under-sampled regions. RRT can
be viewed as implicitly following Monte Carlo principles:
each attempted expansion from existing trees can be viewed
as a trial move. One distinguishing feature of the planner
presented in this paper is that it explicitly incorporate Monte
Carlo simulation in the generation of the whole roadmap
and systematically uses the information of existing nodes to
increase the probability of obtaining valid configurations and
configuration transitions that can serve as roadmap nodes and
edges.

III. HYBRID PRM-MC MOTION PLANNING
The major steps of our hybrid PRM-MC planner can be

described as follows.

PROTOTYPE PRM-MC PLANNER FOR A ROBOT
I. PREPROCESS THE KINEMATIC STRUCTURE AND
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Fig. 3. Seed Cfgs for a single loop with 20 links and a two-loop structure

THE ENVIRONMENT OF THE ROBOT
Identify Monte Carlo moves such as rotation pivots
II. GENERATE SEED CONFIGURATIONS
Generate configurations via random sampling or other methods
and retain those with “desired” properties as seed cfgs
III.CoNDUCT MONTE CARLO SIMULATION IN THE
NEIGHBORHOODS OF THE SEED CFGS
Use Monte Carlo simulation to generate neighboring nodes
retain the valid nodes as roadmap nodes and the
valid Monte Carlo moves between nodes as roadmap edges
IV.USE PRM-TYPE CONNECTION STRATEGY TO
CONNECT DIFFERENT CONNECTED COMPONENTS
OF THE ROADMAP GENERATED FROM STEP II1

Step I analyzes the kinematic structure and the environ-
ment of the robot and identifies Monte Carlo moves that are
expected to have high probability of leading to valid config-
urations from existing configuration with desired properties.
In the case of closed chain motion planning, we want to
find some deformation schemes that can generate new closure
configurations from existing ones based on the analysis of
the kinematic structure of the robot. For some other planners
such as obstacle-based PRM[3] and media-axis PRM [9], [33]
where environment obstacles are considered, the information
of the environment and the robot structure will be used in
deriving desirable Monte Carlo moves that can make robot
configurations stay in contact with obstacles or on the media
axis of the environment. We will discuss in next section how
to identity rotation pivots as one type of favored Monte Carlo
moves for closed chains.

Step II generates some seed configurations to be used as
starting points for the Monte Carlo simulation in step III.
These seed configurations can be generated using random
sampling and other approaches. For example, in the case
of protein folding, we can include known native folds of
the studied protein stored in PDB as (a subset of) seed
configurations. Also for a loop formed by links of equal length,
we can generate regular n-gon configuration for the loop,
where n is the number of links in the loop. We can also
easily generate some other special seed configurations such
as rectangular configurations for loops with even number of
equal-length links. This type of heuristics can be generalized
to some extent to multi-loop mechanisms. Figure 3 shows one
seed configuration for a 20-link chain and a two-loop structure,
respectively.

Step III uses Monte Carlo simulation to generate and
connect nodes in the neighborhoods of the seed configurations
with favored Monte Carlo moves identified in Step I. Purely



randomized walk can be used be in MC simulation for some
appropriate problems. Please note that the neighborhoods of
the seed configurations explored by MC are not necessarily
limited to "local” neighborhoods. Some Monte Carlo moves
such as rotation pivots of closed chains can induce signifi-
cant deformation to closed chains, which correspond to new
configurations in Ccjpsyre that are far away from the original
one.

Our current planner uses two parameters to control the MC
exploration of the neighborhood of each seed configuration:
one is the number of MC runs and the other is the number of
successful MC moves per run. Different values of these two
parameters encode different preferences for MC exploration.
For example, small number of MC runs per seed and large
number of MC moves per run per seed prefer expanded
exploration of the configuration space while large number of
MC runs per seed and small number of MC moves per run
per seed causes dense sampling in the neighborhoods of seed
configurations.

Step IV uses PRM-type connection strategies to try to con-
nect the different connected components of the roadmap graph
generated in step III . Our current closed chain planner is built
upon the OBPRM code developed by Amato’s group [34] and
has access to a diverse set of connection strategies and local
planners implemented in the OBPRM code. In our preliminary
simulation study, we used the straight line planner to try to
connect close nodes in different connected components. We
are in the process of implementing more deliberate planners
such as the local Jacobian planner and the complete accordion
planner[24], [23] as local planners. We are also study the
feasibility of using rotation pivots in local planners.

IV. DEFORMATIONS OF CLOSED CHAIN SYSTEMS

In order to use rotation pivots to deform a kinematic chain
system, we need to identify rotation axes about which different
subsets of the joint systems can rotate in different directions
and/or angles without breaking the loop structures in the chain.
It is well known that any non-adjacent vertex pairs of a single-
loop closed chain can define a pivot axis. To facilitate rotation
pivots in general closed chain structures, we have identified the
connection between the joints that can form a rotation axis and
the articulation sets of the graph underlying the closed chain
structure. An articulation set of a connected graph is a subset
of the vertices of the graph whose removal will disconnect
the graph. In other words, the graph resulted from removing
the vertices of the articulation set and the edges incident on
these vertices will have more than one connected components.
It is the joints corresponding to these different connected
components that can potentially have different rotations about
the rotation axis formed by the vertices corresponding to
the articulation set while satisfying the closure constraints.
This intuitive description can be formalized in the following
theorem that is proved in our technical report.

Theorem /: For a 3D kinematic chain system with spher-
ical joints, when the system joints that correspond to the
vertices of an articulation set of the underlying graph are on

one straight line, this line can serve as a rotation axis. Subsets
of system joints belonging to different connected components
in the graph resulted from cutting out the articulation set can
rotate about the pivot axis in different directions and with
different angles without breaking any kinematic constraints

Based one the above theorem, it is easy to reach the
following conclusions regarding articulation sets of different
cardinality (different numbers of vertices in articulation sets).

Corollary /: For a 3D kinematic chain system with spher-
ical joints, any articulation set of cardinality less than or equal
to two can define a pivot axis.

This is because a line can always be defined with one point
or two points to pass by the line. Since n points, when n > 2,
generally do not fall on one line, we have the following result
for articulation sets of cardinality greater than 2.

Corollary 2: For a 3D kinematic chain system with spheri-
cal joints, an articulation set of cardinality greater than two can
define a pivot axis only when the system joints corresponding
to the articulation set are collinear.

Articulation sets are a general concept with no restriction
on applicable graph structures, and there exist many graph
algorithms analyzing graph connectivity and identifying ar-
ticulation sets [35]. Similar to closure constraints, pivot axes
are also intrinsic properties of closed chains. So in step I
of our algorithm, the PRM-MC planner analyzes the closed
chain structure and identifies the set of all possible pivots and
corresponding connected components. Then in step III, the
planner randomly picks a pivot axis and generates different
rotation pivots (different rotation directions and angles) for
different connected components. For a given connected com-
ponent and its rotation direction and angle about the pivot
axis, the planner computes the rigid transformation matrix in
SE(3) corresponding to the motion and uses it to update the
configurations of the links in this connected component. After
updating configuration for each moved link, the planner checks
for collision among links. For a self-collision free configura-
tion, the planner updates the joint coordinates affected by the
rotation pivot.

V. SIMULATION RESULTS

We have developed PRM-MC planners for closed chains and
proteins and have obtained promising simulation results in
our preliminary study [18]. Our current planner is written in
C++ and built upon the OBPRM code, developed by Amato’s
research group[34]. All simulation results reported in this
section were performed on a 1.2GHz Pentium III laptop and
used the RAPID [36] package for 3D collision detection.

This section includes results for a few closed chain systems
that are composed of links of equal lengths. In particular, we
consider four closed chain structures in this paper: the first
three have only one loop with the number of links being 7,
20, and 100 respectively; and the last one has two loops, as
shown in Figure 3, with one loop having 6 links and the other
having 10 of which two links are shared between the loops.

Table I shows the running times (seconds) and statistics
of roadmaps constructed with and without the Monte Carlo



TABLE I
ROADMAP CONSTRUCTION TIMES (SECONDS) AND STATISTICS

Roadmap Construction
Pivot MC Generation Connection
Chains sec [ cfg [ CC sec | cfg sec [ CC
7(0) 2.90 | 101 9 290 | 101 || 0.95 1
7(1) 8.06 | 202 9 8.06 | 202 1.81 1
7 — — — 0.13 | 100 || 9.58 4
20(0) 5.44 | 101 1 5.44 | 101 0.0 1
20(1) 14.98 | 202 7 1528 | 202 1.78 4
20 - - - 36.55 | 100 || 0.91 97
100(0) 15.09 | 101 1 15.09 | 101 0.0 1
100(1) 15.56 | 101 1 31.73 | 101 0.0 1
100 - - - || 172.20 0 - -
2loops(0) 6.76 | 101 4 6.76 | 101 1.19 1
2loops(1) 15.33 | 202 7 15.47 | 202 || 2.34 4
2loops - - - 6.98 | 100 || 7.17 64

explorations that used pivot deformations as attempted MC
moves. In the table, cfg and CC denote the number of
nodes and connected components of roadmaps generated from
each step. For the results presented in table I, we used our
kinematics-based PRM closed chain planner to try to generate
and connect 100 random nodes. (Recalled that our PRM
closed chain planner breaks the loops to open chains and
then tries to use forward and inverse kinematics to close the
loops.) We used our PRM-MC planner to conduct ten Monte
Carlo simulation runs, each with ten successful MC moves,
for each seed configuration. We included the regular n-gon
configuration of each structure as a seed configuration. We
also tried to use our PRM closed chain planner to generate
one random configuration as an additional seed configuration.

In the ”chains” column in table I, the numbers in the
parentheses after the link numbers are the numbers of random
seeds used in our PRM-MC planner. So the results in the
first row of each structure were generated with the regular
polygon as the only seed configuration, while the results in the
second row were generated with one additional random seed,
if one was found by our PRM closed-chain planner within
certain number of tries. The results in the last row of each
structure were generated by the PRM closed chain planner. The
generation times for PRM-MC planners include times for both
random seed generation and rotation pivot. The differences
between the generation times and the corresponding rotation
pivot times were time spent by the PRM planner to generate
a random self-collision-free closure configuration. It should
be noted that the PRM-MC node generation steps, namely
seed configuration generation and rotation pivots, also generate
edges in the rotation pivot step. As shown in the table, the
pivot MC successfully connected all nodes for some systems
and generated a roadmap of one connected component. For
these cases, the PRM-type connection step was not executed.

The table shows that our kinematics-based PRM planner
performed reasonable well only for the 7-link chain. It failed to
find any self-collision-free closure configurations for the 100-
link chain after spending 172.2 seconds on 10° random tries.
So the third raw for the 100-link chain in table I contains

few numerical data. For the results shown in the second
raw for the 100-link chain, our PRM-MC planner stopped
the unsuccessful generation of a random seed after 10* tries.
As for the 20-link chain and the two-loop chain, the PRM
planner made few connections and generated roadmaps with
many connected components. On the other hand, our PRM-MC
planner generated roadmaps with a small number of connected
components for all four closed chain structures. The good
connectivity of the PRM-MC roadmap shows the effectiveness
of using pivot deformation as MC moves to sample and
connect closure configurations. We emphasize, however, that
the connectivity of the PRM-MC roadmaps as given in table I
is not sufficient for drawing conclusions about the topological
connectivity of the self-collision-free configuration spaces of
closed chains, although the results probably do shed some
lights on the issue.

VI. CONCLUSION

Probabilistic roadmap methods have been very successful in
solving complex problems in high-dimensional configuration
spaces. Numerous trajectories between pairs of configurations
can be extracted from the generated roadmap graph. This
is one distinct feature of PRM as compared to Monte Carlo
simulation, where each successful simulation run generates
one trajectory and many simulation runs simply fail. The
success of PRM can be partly attributed to its efficient reuse
of nodes and edges in the roadmap graph. Conventionally,
roadmap nodes are generated independently. In this paper,
we propose a hybrid PRM-MC planner where MC simulation
is used to generate and connect roadmap configurations in
neighborhoods of existing configurations. This approach is
designed for taking advantage of the continuity property of
most constraints involved in motion planning to improve the
successful rate of node generation and connection.

This paper also presents a PRM-MC motion planner for
3D closed chains with spherical joints to demonstrate the
effectiveness of this hybrid approach. In particular, we iden-
tify rotation pivots as one efficient way to generate and
connect closure configurations while maintaining the closure
constraints. Our preliminary simulation results shows that our
planner can efficiently generate well-connected roadmaps for
closed chain with many links and multiple loops.

We are currently working on various improvements on our
closed chain planner. The current planner does not consider
joint limits. Incorporating joint limit constraints will restrict
feasible pivot deformation to stay within the joint limits. A
related interesting problem would be to introduce different
penalties for different types of structure changes and try to
generate optimal rotation pivot under the penalty definition.
This problem is motivated by the models of protein flexibility
where torsion angles are generalized modeled to be flexible
and bond angles are normally modeled with fixed value or
a small range of allowed changes. Pivot motion as discussed
in this paper is not feasible for closed chain with revolute
joints. For this situation, the local and accordion planners[24],
[23] as well as the line tracking planner[37] can be adapted



to serve as MC moves. For systems that have feasible pivot
deformation, we are working on a local planner that uses
rotation pivots to connect two closure configurations. However,
there are other deformation modes such as sheer motion
available to closed chain mechanism. So we need to identify
conditions under which it is feasible to use a sequence of
rotation pivot to connect two closure configurations. If two
closure configurations cannot be connected by rotation pivots
(and other deformation methods), we can use the accordion
complete planner to generate a transition path between them.
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